Tìm dư: f(x)=x^100+x^90+...+x^10+1; g(x)=x^2-x+1
a) Cho đa thức f(x) = x^100 + x^99 + ... + x^2 + x + 1 . tìm dư của phép chia đa thức f(x) cho đa thức x^2 -1
b) Tìm đa thức f(x) biết rằng f(x) chia cho x-2 thì dư 2, f(x) chia cho x-3 thì dư 7 , f(x) chia cho x^5 - 5x + 6 thì đc thương là 1 - x^2 và còn dư
Huyền hỏi 2 bài liên tiếp à viết nhanh thế
Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?
Tìm dư của phép chia: a)\(f\left(x\right)=x^{100}+x^{99}+...+x+1\) chia cho \(g\left(x\right)=x^2+x+1\) b)\(f\left(x\right)=x^{100}+x^{90}+...+x^{10}+1\) chia cho \(g\left(x\right)=x^2-x+1\)
Câu a nhóm 3 hạng tử với nhau nha vd như x^100 + x^99 +x^98 =x^98(x^2+x+1)
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.
Thầy cho em hỏi ạ:
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.
1)
Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )
Ta có:
\(f\left(1\right)=a+b+c+d+e=0\) (1)
\(f\left(2\right)=16a+8b+4c+2d+e=0\) (2)
\(f\left(3\right)=81a+27b+9c+3d+e=0\) (3)
\(f\left(4\right)=256a+64b+16c+4d+e=6\) (4)
\(f\left(5\right)=625a+125b+25c+5d+e=72\) (5)
\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)
\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)
\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)
\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)
\(E=B-A=50a+12b+2c=0\)
\(F=C-B=110a+18b+2c=6\)
\(G=D-C=194a+24b+2c=66-6=60\)
Tiếp tục lấy H=F-E; K=G-F; M=H-K
Ta tìm được a
Thay vào tìm được b,c,d,e
1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e
có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n)
thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7
Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42
Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).
2. Thiếu dữ liệu
3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)
...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)
để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5
Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý
Tìm đa thức f(x) sao cho f(x) chia cho x - 2 dư 1 , f(x) chia cho x + 5 dư 8 , f(x) chia cho x^2 + 3x - 10 được thương là 2x và còn dư .
GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2) và (x+5) lần lượt là p(x) và Q(x)
theo bài ra ta có
\(\hept{\begin{cases}f._x=\left(x-2\right).p._{\left(x\right)}+1............\left(1\right)\\f._{\left(x\right)}=\left(x+5\right).Q._{\left(x\right)}+8.......\left(2\right)\end{cases}}\)
GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2)(x+5) [ là x^2+3x-10 phân tích thành] =2x là g(x) và số dư là nhị thức bậc nhất là ax+b
ta có, \(f._{\left(x\right)}=\left(x-2\right)\left(x+5\right).g._{\left(x\right)}+ax+b....................\left(3\right)\)
TỪ (1) VÀ (3) TA CÓ X=2 THÌ \(\hept{\begin{cases}f._2=1\\f_2=2a+b\end{cases}}\)
=> 2a+b=1 =>b=1-2a (4)
TỪ (2) VÀ (3) TA CÓ X=-5 THÌ \(\hept{\begin{cases}f_{\left(-5\right)}=8\\f_{\left(-5\right)}=-5a+b\end{cases}}\)
=> 8=-5a+b =>b=8+5a (5)
TỪ (4) VÀ (5) =>1-2a=8+5a <=> a=-1
=> b=3
vậy số dư là -x+3
vậy đa thức f(x) =(x-2)(x+5) .2x+(-x+3)=\(2x^3+6x^2-21x+3\)
Tìm số dư của đa thức f(x)=1+x^2+x^4+...+x^100 cho x+1
Gọi số dư của f(x) chia cho x+1 là r
Áp dụng định lý Bezout ta có:
f(x) chia cho x+1 dư r \(\Rightarrow r=f\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+...+\left(-1\right)^{100}\)
\(\Leftrightarrow r=100\)
Vậy số dư của đa thức f(x) cho x+1 là 100
tìm dư trong phép chia đa thức f(x)=1+x^2+x^4+x^6+...+x^100 cho x+1
Áp dụng định lý bơ-zu nhé
Đa thức f(x) chia cho đa thức x-a thì có số dư là: f(a)
Áp dụng bài này số dư là: F(-1)
Cho đa thức f(x)=x100+x99+....+x2+x+1. Tìm dư của phép chia f(x) cho x2-1
Tìm đa thức f(x) biết: f(x) chia x+2 dư 10
f(x) chia x-2 dư 24
f(x) chia (x+2).(x-2) được thương -5x
Giả sử f(x) chia cho (x+2)(x-2) có dư là ax + b
=> \(f(x)=(x+2)(x-2).(-5x)+ax+b\)
f(x) chia cho x+2 dư 10 ; f(x) chia cho x - 2 dư 24
=> \(\left\{{}\begin{matrix}f\left(-2\right)=-2a+b=10\\f\left(2\right)=2a+b=24\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}b=17\\a=\dfrac{7}{2}\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=\left(x+2\right)\left(x-2\right).\left(-5a\right)+\dfrac{17}{2}x+17\)
Đến đây thích tách ra thì tách.
a/Tìm số dư trong phép chia f(x)=1+x^2+x^4+x^6+...+x^100 : g(x) = (x+1)
b/tìm m để f(x)= 1+2m+x^2+x^4+x^6+...+x^100 : (x+1)
c/ Cm rằng : với m =571 thì f(x) = 2x^5 - 70x^3+4x^2 - x+1 chia hết cho x-6
GIÚP VỚI NHA! ĐANG CẦN GẤP! THANHKS MỌI NGƯỜI AHJHJ
a) \(g\left(x\right)=x+1=x-\left(-1\right)\)
Áp dụng định lý Bê-du có số dư của \(f\left(x\right)\)cho \(g\left(x\right)\)là :
\(f\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+....+\left(-1\right)^{100}\)
\(=1+1+1+...+1\)
( \(\frac{100-0}{2}+1=51\)số \(1\))
\(=51\)
Vậy ...
Tương tự phần a, áp dụng định lý Bê du có :
\(f\left(-1\right)=0\)
\(\Rightarrow51+2m=0\)
\(\Rightarrow m=-\frac{51}{2}\)
Vậy ....
c) Đề không rõ ràng.