Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
PH
3 tháng 10 2018 lúc 12:23

Sửa lại đề bài nhé . \(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)

Xét hiệu \(f\left(x\right)-g\left(x\right)=x^9\left(x^{90}-1\right)+x^8\left(x^{80}-1\right)+x^7\left(x^{70}-1\right)+...+x\left(x^{10}-1\right)\)  

                                      \(=x^9\left[\left(x^{10}\right)^9-1\right]+x^8\left[\left(x^{10}\right)^8-1\right]+x^7\left[\left(x^{10}\right)^7-1\right]+...+x\left(x^{10}-1\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)⋮\left(x^{10}-1\right)\)

Mà \(x^{10}-1=\left(x-1\right)\left(x^9+x^8+x^7+...+x+1\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)⋮g\left(x\right)\Rightarrow f\left(x\right)⋮g\left(x\right)\)

Chúc bạn học tốt

Bình luận (0)
TH
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
ML
12 tháng 8 2015 lúc 12:08

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

Bình luận (0)
IC
Xem chi tiết
TT
14 tháng 8 2020 lúc 11:37

Gọi \(P\left(x\right)=ax^4+bx^3+cx^2+dx+e\)

Theo bài ta có : \(P\left(x\right)⋮7\Rightarrow\hept{\begin{cases}P\left(0\right)⋮7\\P\left(1\right)⋮7\\P\left(-1\right)⋮7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}e⋮7\\a+b+c+d+e⋮7\\a-b+c-d+e⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+b+c+d⋮7\\a-b+c-d⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+c⋮7\\b+d⋮7\end{cases}}\)

Mặt khác ta có : \(P\left(2\right)=16a+8b+4c+d+e⋮7\)

\(\Leftrightarrow2a+b+4c+d⋮7\)

\(\Leftrightarrow2\left(a+c\right)+b+d+2c⋮7\)

\(\Leftrightarrow2c⋮7\Leftrightarrow c⋮7\Leftrightarrow a⋮7\)

Chứng minh tương tự thì ta có \(a,b,c,d,e⋮7\). Ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
KP
Xem chi tiết
AH
12 tháng 11 2018 lúc 17:37

Phần a)

Sử dụng bổ đề \(x^{mn}-1\vdots x^m-1\) với mọi \(m,n \in\mathbb{N}\)

Chứng minh bổ đề:

Thật vậy, theo hằng đẳng thức đáng nhớ:

\(x^{mn}-1=(x^m)^n-1^n=(x^m-1)[(x^m)^{n-1}+(x^m)^{n-2}+...+x^m+1]\vdots x^m-1\)

Bổ đề đc chứng minh.

-----------------------------------

Ta có:

\(x^{400}+x^{200}+1=x^{396}.x^4+x^{198}.x^2+1\)

\(=x^4(x^{396}-1)+x^2(x^{198}-1)+(x^4+x^2+1)\)

Áp dụng bổ đề trên vào bài toán kết hợp với \(x^6-1=(x^2-1)(x^4+x^2+1)\vdots x^4+x^2+1\) ta suy ra:

\(x^{396}-1=x^{6.66}-1\vdots x^6-1\vdots x^4+x^2+1\)

\(x^{198}-1=x^{6.33}-1\vdots x^6-1\vdots x^4+x^2+1\)

\(x^4+x^2+1\vdots x^4+x^2+1\) (hiển nhiên)

Do đó: \(x^{400}+x^{200}+1\vdots x^4+x^2+1\)

(đpcm)

Bình luận (0)
AH
12 tháng 11 2018 lúc 17:48

Phần b)

\(F(x)=x^{1970}+x^{1930}+x^{1890}=x^{1890}(x^{80}+x^{40}+1)\)

Thấy rằng:

\(x^{80}+x^{40}+1=(x^{40}+1)^2-x^{40}=(x^{40}+1)^2-(x^{20})^2\)

\(=(x^{40}+1-x^{20})(x^{40}+1+x^{20})\)

Mà: \(x^{40}+1+x^{20}=(x^{20}+1)^2-x^{20}=(x^{20}+1)^2-(x^{10})^2\)

\(=(x^{20}+1-x^{10})(x^{20}+1+x^{10})\vdots x^{20}+x^{10}+1\)

Do đó:

\(x^{80}+x^{40}+1\vdots x^{20}+x^{10}+1\)

Bình luận (0)
NY
Xem chi tiết
H24
Xem chi tiết