Cho a , b , c , d là 4 số khác nhau , khác 0 thỏa mãn điều kiện : b2 = ac ; c2 = bd và b3 + c3 + d3 ≠ 0 . Chứng minh rằng :\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{b}\)
Gọi a, b, c là ba số thực khác 0 thay đổi và thỏa mãn điều kiện 3a = 5b = 15-c. Tìm giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2 - 4(a+b+c)
Cho a,b,,d là các số tự nhiên đối một khác nhau thỏa mãn điều kiện
\(\dfrac{a}{a+b}\)+\(\dfrac{b}{b+c}\)+\(\dfrac{c}{c+d}\)+\(\dfrac{d}{d+a}\)=\(2\)
Chứng minh rằng ac=bd
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)
\(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)
\(\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)
\(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>b(c+d)(d+a)+d(a+b)(b+c)=0 (vì c≠a)
<=>abc-acd+bd2-b2d=0
<=> (b-d)(ac-bd)=0 <=> ac - bd =0 (vì b≠d) <=> ac = bd
Vậy abcd =(ac)(bd)=(ac)2
Cho a,b,c,d là 4 số khác nhau, khác không thoả mãn điều kiện : b^2 = ac; c^2 = bd và b^3+c^3+d^3 không bằng 0
CM : (a^3+b^3+c^3)/(b^3+c^3+d^3) = a/d
Up ba, giải giúp mik dới !!!!!!!!!
Cho 4 số a,b,c,d khác 0 thỏa mãn b2=ac và c2=bd
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}=\dfrac{a}{d}\)
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c};c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;b=ck;c=dk\\ \Rightarrow a=bk=ck^2=dk^3\\ \Rightarrow\dfrac{a}{d}=k^3\\ \text{Mà }\dfrac{a}{b}=k\Rightarrow\dfrac{a^3}{b^3}=k^3\\ \Rightarrow\dfrac{a}{d}=\dfrac{a^3}{b^3}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)
Gọi a, b, c là ba số thực khác 0 thay đổi và thỏa mãn điều kiện 3 a = 5 b = 15 - c . Tìm giá trị nhỏ nhất của biểu thức P = a 2 + b 2 + c 2 - 4 a + b + c
A. - 3 - log 5 3
B. -4
C. - 2 - 3
D. - 2 - log 5 3
Đáp án B
3 a = 5 b = 1 3 c 5 c ⇔ a log 3 15 = b log 3 15 = - c log 15 15 ⇔ a 1 + log 3 5 = b 1 + log 5 3 = - c
Đặt t = log 3 5 ⇒ a = - c 1 + t b = - c 1 + 1 t = a t ⇒ a = - c 1 + a b ⇔ a b + b c + c a = 0
⇒ P = a + b + c 2 - 4 a + b + c ≥ - 4 . Dấu bằng khi a + b + c = 2 a b + b c + c a = 0 , chẳng hạn a = 2,b = c = 0.
Cho 4 số tự nhiên khác 0 thỏa mãn: a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số
Ta có : a2 + b2 = c2 + d2
⇒a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) ⋮2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) ⋮2
⇒a + b + c + d ⋮2 nên cũng là hợp số
Ta có: \(a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2+b^2+a^2+b^2=a^2+b^2+c^2+d^2\)
\(\Rightarrow2\left(a^2+b^2\right)=a^2+b^2+c^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2\) là chẵn
Xét hiệu: \(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Mà tích 2 số TN liên tiếp là chẵn
⇒ Tổng a+b+c+d là chẵn
Vì \(a+b+c+d>2\) với mọi số TN a,b,c,d khác 0
⇒ a+b+c+d là hợp số
Cho ab ,bc ( c khác 0 ) là các số có hai chữ số thỏa mãn điều kiện ab: a+b =bc: b+c .Chứng minh rằng b^2= ac
Cho a,b,c,d là 4 số khác 0 thỏa mãn các điều kiện b2=ac ; c2=bd và b3+c3+d3 khác 0.
Chứng minh rằng a3+b3+c3/b3+c3+d3=a/d
\(b^2\)= \(ac\)=> \(\frac{a}{b}\)= \(\frac{b}{c}\)(1)
\(c^2\)= \(bd\)=> \(\frac{b}{c}\)= \(\frac{c}{d}\)(2)
từ (1) và (2) => \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)= \(\frac{a}{b}\)* \(\frac{b}{c}\)* \(\frac{c}{d}\)= \(\frac{a}{d}\) (*)
\(\frac{a^3}{b^3}\)= \(\frac{b^3}{c^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (**)
Từ (*) và (**) => \(\frac{a}{d}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (đpcm)
cho A và C là 2 số khác 0 và thỏa mãn các điều kiện sau CA chia hết cho 8, AC là số lập phương
cho A và C là 2 số khác 0 và thỏa mãn các điều kiện sau CA chia hết cho 8, AC là số lập phương