Những câu hỏi liên quan
VT
Xem chi tiết
TN
Xem chi tiết
NP
5 tháng 4 2016 lúc 10:41

2002A= 2002 + \(2002^2+2002^3+2002^4+.....+2002^{100}\)

2002A - A= \(\left(2002+2002^2+2002^3+2002^4+....+2002^{100}\right)-\left(1+2002+2002^2+.....+2002^{99}\right)\)

2001A= \(2002^{100}-1\)

Vì \(2002^{100}\) > \(2002^{100}-1\) nên B > 2001A

Bình luận (0)
AD
Xem chi tiết
US
Xem chi tiết
NH
Xem chi tiết
LB
19 tháng 10 2016 lúc 7:15

P =1^2002 + 2^2002 + 3^2002 +4^2002 +...+ 2002^2002 

Q = 1^2+2^2+..+ 2002^2, ta có Q = 1/6*2002*2003*(2.2002+1) ≡ 0 (mod 11) 
{Công thức 1^2 +2^2 +...+ n^2 = n(n+1)(2n+1)/6} 

P - Q = (1^2002 -1^2) + (2^2002-2^2) +..+ (2^2002 -2002^2) 

Theo định lý Fermat nhỏ thì a^(p-1) ≡ 1 (mod p) 
=> a^10 ≡ 1 (mod 11) 
=> a^2000 ≡ 1 (mod 11) 
=> a^2002 ≡ a^2 (mod 11) (*) 

Từ (*) => P - Q ≡ 0 (mod 11) 
mà Q ≡ 0 (mod 11) theo cm trên 

=> P ≡ 0 (mod 11)

Bình luận (0)
HC
Xem chi tiết
N1
Xem chi tiết
HD
29 tháng 10 2015 lúc 20:33

Đặt 

P =1^2002 + 2^2002 + 3^2002 +4^2002 +...+ 2002^2002 

Q = 1^2+2^2+..+ 2002^2, ta có Q = 1/6*2002*2003*(2.2002+1) ≡ 0 (mod 11) 
{Công thức 1^2 +2^2 +...+ n^2 = n(n+1)(2n+1)/6} 

P - Q = (1^2002 -1^2) + (2^2002-2^2) +..+ (2^2002 -2002^2) 

Theo định lý Fermat nhỏ thì a^(p-1) ≡ 1 (mod p) 
=> a^10 ≡ 1 (mod 11) 
=> a^2000 ≡ 1 (mod 11) 
=> a^2002 ≡ a^2 (mod 11) (*) 

Từ (*) => P - Q ≡ 0 (mod 11) 
mà Q ≡ 0 (mod 11) theo cm trên 

=> P ≡ 0 (mod 11)

Bình luận (0)
KL
Xem chi tiết
DH
Xem chi tiết