\(\frac{2ab^2-2an-5a^2n+5a^2b^2}{5an+a^2b^2-5ab^2-a^2n}\)
a)Tính giá trị của biểu thức với a=15; b=(-8)
cho B = 2ab^2-2an-5a^2n+5a^2b^2
5an+a^2b^2-5ab^2-a^2n
a)Rút gọn B
b)Tính B với a = 15 và b= -8
cho\(a^3-4a^2b=2b^3-5ab^2\) giá trị của biểu thức P=\(\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\)
cho A= 2 ab2-2an-5a2n+5a2b2 / 5an+a2b2-5ab2-a2n
Tính giá trị của A khi : a=15 , b=8
điều kiện:b^2 khác n. a khác 5
A=\(=\frac{2ab^2-2an-5a^2n+5a^2b^2}{5an-5ab^2+a^2b^2-a^2n}=\frac{2a\left(b^2-n\right)+5a^2\left(b^2-n\right)}{-5a\left(b^2-n\right)+a^2\left(b^2-n\right)}=\frac{\left(b^2-n\right)\left(2a+5a^2\right)}{\left(b^2-n\right)\left(a^2-5a\right)}=\frac{a\left(2+5a\right)}{a\left(a-5\right)}=\frac{2+5a}{a-5}\)
thay a vào rồi tính là ok
Cho a3+4a2b=2b3-5ab2 và a khác b khác 0.
Giá trị \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab^2}=?\)
Điệnthọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay
Cho \(a^3-4a^2b=2b^3-5ab^2\)
Tính \(\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\)
G/t suy ra (a-2b)(a-b)2=0
suy ra a=2b hoặc a=b
thay vào được ....
cho a,b,c khác 0 thỏa mãn 2ab=c^2,ac=4b^2.Tính giá trị biểu thức 5a+4b+3c/3a+2b+c
Cho: a^3 - 4a^2b = 2b^3 - 5ab^2 và a khác b
Tính P = (5a^2 - 4b^2 + 2ab)/(6a^2 + 2b^2 - 2ab)
Cho \(a^3-4a^2b=2b^3-5ab^2,a\ne b\ne0\) .Tính \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\) .
1 . nhá: cách làm: phân tích đề bài ta cho làm sao xuất hiện hiện các hằng đẳg thuức" \(\left(a-b\right)^3=b\left(a-b\right)^2\Leftrightarrow\frac{\left(a-b\right)^3}{\left(a-b\right)^2}=b\Rightarrow a=2b\)
từ đó chỗ nào có "a" thay vào P thì ta sẽ đc kq là 1
cho a^3-4a^2b=2b^3-5ab^2 gia tri bieu thuc P=5a^2-4b^2+2ab/6a^2+2b^2-3ab
a3-4a2b=2b3-5ab2
=>(a3-3a2b+3ab2-b3)-(a2b+b3-2ab2)=0
=>(a-b)3-b(a2-2ab+b2)=0
=>(a-b)2(a-2b)=0
=> a-2b=0 (vì a#b#0 bạn thiếu điều kiện nha)
=>a=2b. Thay a=2b vào bt P ta đc P=1