Những câu hỏi liên quan
DV
Xem chi tiết
NA
Xem chi tiết
Xem chi tiết
NH
5 tháng 12 2023 lúc 14:33

          \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

          \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

   \(\dfrac{a}{c}\)  =  \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\dfrac{a}{c}\) =   \(\dfrac{5a+3b}{5c+3d}\) (1) 

       \(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\)  (2)

Kết hợp (1) và (2) ta có:

       \(\dfrac{5a+3b}{5c+3d}\) =  \(\dfrac{5a-3b}{5c-3d}\) 

⇒   \(\dfrac{5a+3b}{5a-3b}\) =  \(\dfrac{5c+3d}{5c-3d}\) (đpcm)

 

   

      

 

 

   

 

Bình luận (0)
NH
5 tháng 12 2023 lúc 14:39

b;   \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) 

      \(\dfrac{a}{b}\) =  \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)

 

      

 

Bình luận (0)
DT
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
AK
26 tháng 9 2021 lúc 9:02

học tốt

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
AH
2 tháng 3 2023 lúc 15:37

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.

Khi đó:

$\frac{5a+3b}{5a-3b}=\frac{5bk+3bk}{5bk-3bk}=\frac{8bk}{2bk}=4(1)$

$\frac{5c+3d}{5c-3d}=\frac{5dk+3dk}{5dk-3dk}=\frac{8dk}{2dk}=4(2)$

Từ $(1); (2)$ suy ra điều phải chứng minh.

 

Bình luận (0)
HT
Xem chi tiết
NT
Xem chi tiết
DN
8 tháng 12 2015 lúc 20:31

Ta có: \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)(Tính chất dảy tỉ số bằng nhau)

=>\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

NHỚ **** CHO TỚ NHÉ

Bình luận (0)