Tìm hai số nguyên dương x,y sao cho thỏa mãn cả 3 điều kiện sau :
a)(x+3) chia hết cho y ; b) x=3y+5 ;c) (x+11y) là số nguyên tố
Mình cần gấp
Ai nhanh nhất mình tick cho
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.
1 Tìm số nguyên x sao cho 4x + 3 chia hết cho x - 2
2 Tìm hai số nguyên dương x và y thoả mãn cả ba điều kiện sau
a) ( x + 3 ) \(⋮\)y b) x = 3y + 5 c) ( x + 11y ) là số nguyên tố
Tìm các cặp số nguyên dương (x;y) thoả mãn 1 trong các điều kiện sau: 1)2x+2y-3 chia hết cho xy
2)x+2y+1 chia hết cho xy
Có bao nhiêu số nguyên dương n thỏa mãn các điều kiện sau:
i) 219 ≤ n ≤ 2019
ii) Tồn tại x, y ∈ N sao cho 1 ≤ x< n< y và y chia hết cho các số nguyên dương từ 1→ n, trừ 2 số x và x+1
Cho các số nguyên dương x, y thỏa mãn điều kiện x3 + 1/y+1 và y3+1/x+1 thuộc Z.Chứng minh rằng:
a)x3+1 chia hết cho y+1
b)x3y3- 1 chia hết cho y + 1
b1:Xét cặp số nguyên dương (a,b) thỏa mãn điều kiện abba=72.Hỏi a+b nhận giá trị lớn nhất là bao nhiêu
b2:Hỏi có bao nhiêu cặp số nguyên dương (x,y)sao cho 1/x+1/y=1/2020
b3:tìm số nguyên dương N nhỏ nhất ,chia hết cho 99 và tất cả các chữ số của N đều chẵn
Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅
Tìm các số tự nhiên x và y lớn hơn 1 thỏa mãn cả hai điều kiện là x + 1 chia hết cho y và y + 1 chia hết cho x
tìm 2 số tự nhiên x;y lớn hơn 1 thỏa mãn cả 2 điều kiện sau: x+1 chia hết cho y và y+1 chia hết cho x
Giả sử 1 \(<\) x \(\le\)y. Đặt x+1=yk ( k là một là một số tự nhiên khác 0)
Ta có : x+1 = yk \(\le\) y+1 \(<\) y+y = 2y
=> yk \(<\) 2y
=> k\(<\) 2
Mà k là một là một số tự nhiên khác 0
Nên k=1
Thay k = x+1 vào y+1 ta được
x+1+1 = x+2 chia hết cho x
Mà x chia hết cho x nên 2 chia hết cho x
=> x\(\in\left\{1;2\right\}\)
Với x=1 thì y=x+1=1+1=2
Với x=2 thì y=2+1=3
Vậy các cặp số (x;y) thỏa mãn : (1;2) ; (2;3)
Tìm các số tự nhiên x y lớn hơn 1 thỏa mãn cả 2 điều kiện sau : ( x + 1 ) chia hết cho y và ( y + 1 ) chia hết cho x