Tìm hai số nguyên tố a, b biết
a + b = 120 và ƯCLN ( a; b) = 24
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
giúp mik ik mà mn ơiiii mik sẽ tim cho
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
Bài 2:
b. Vì ƯCLN(a,b)=6 nên đặt $a=6x, b=6y$ với $x,y$ là hai số nguyên tố cùng nhau.
Khi đó:
$ab=6x.6y=216$
$\Rightarrow xy=6$. Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$
$\Rightarrow (a,b)=(6,36), (12, 18), (18,12), (36,6)$
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
giúp mik ik mà mn ơiiii mik sẽ tim cho
Tìm hai số a,b ϵ N, biết
a) ƯCLN(a, b) + BCNN(a, b) = 19
b) BCNN(a, b) - ƯCLN( a, b) = 5
c) BCNN(a, b) - ƯCLN(a, b) = 35
Lời giải:
a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra: $d+dxy=19$
$\Rightarrow d(1+xy)=19$
Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:
TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$
Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$
$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$
b,c bạn làm tương tự theo hướng của câu a nhé.
a, Tìm hai số tự nhiên (a;b) biết: ab = 216 và ƯCLN(a;b) = 6; a < b
b, Tìm số nguyên tố p sao cho p+4 và p+8 cũng là các số nguyên tố
a, Do (a,b) = 6 => a = 6m; b = 6n với m,n ∈ N*; (m,n) = 1 và m ≤ n
Vì vậy ab = 6m.6n = 36mn, do ab = 216 => mn = 6. Do đó m = 1, n = 6 hoặc m = 2, n = 3
Với m = 1, n = 6 thì a = 6, b = 36
Với m = 2, n = 3 thì a = 12, b = 18
Vậy (a;b) là (6;36); (12;18)
b, Vì p là số nguyên tố nên ta xét các trường hợp của p
Trường hợp 1: p = 2, khi đó p+4 = 6; p+8 = 10 không là số nguyên tố (loại).
Trường hợp 2: p = 3, khi đó p+4 = 7; p+8 = 11 là hai số nguyên tố (thỏa mãn).
Trường hợp 3: p>3 nên p có dạng 3k+1; 3k+2 với k ∈ N*.
Nếu p = 3k+1 thì p+8 = 3k+1+8 = 3k+9 chia hết cho 3 và lớn hơn 3 nên p+8 không là số nguyên tố (loại).
Nếu p = 3k+2 thì p+4 = 3k+2+4 = 3k+6 chia hết cho 3 và lớn hơn 3 nên p+4 không là số nguyên tố (loại).
Kết luận. p = 3
CHO HAI SỐ A=24 và b=60 a) phân tích a và b ra thừa số nguyên tố b) tìm ƯCLN (a,b), rồi tìm ƯC (a,b) mong mọi người giúp
\(a=24=2^3\cdot5\\ b=60=2^2\cdot3\cdot5\\ ƯCLN\left(a,b\right)=2^2\cdot3=12\\ ƯC\left(a,b\right)=Ư\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
\(a.\)\(A=24=2^3.5\)
\(B=60=2^2.3.5\)
\(b.ƯCLN\left(a,b\right)=2^2.5=20\)
\(ƯC\left(a,b\right)=Ư_{\left(20\right)}=\left\{1;2;3;4;10;20\right\}\)
a) 24=23.3 60=22.3.5
b)ƯCLN(24,36)= 12 \(\Rightarrow\)ƯC(24,36)=Ư(12)=(1;2;3;4;6;12)
Cho hai số a = 72 và b = 96.
a) Phân tích a và b ra thừa số nguyên tố;
b) Tìm ƯCLN(a, b), rồi tìm ƯC(a, b).
a) a = 72 = 23.32
b = 96 = 25.3
b) Ta thấy 2 và 3 là các thừa số chung của 72 và 96. Số mũ nhỏ nhất của 2 là 3 và số mũ nhỏ nhất của 3 là 1 nên ƯCLN(72, 96) = 23.3 = 24
ƯC(a, b) = Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}.
a) 72=2.2.2.3.3 ; 96=2.2.2.2.2.3
b)ƯCLN(72;96)=2.2.2.3=24
ƯC(72;96)=Ư(24)={1;2;3;4;6;8;12;24}
Bài 1: a) Tìm hai số tự nhiên a và b, biết a không chia hết cho b và BCNN(a, b) = 630; ƯCLN(a, b) = 18.
b) Tìm số nguyên tố p để: p + 10 và p + 14 cùng là số nguyên tố
Cho hai số a = 72 và b = 96
a) Phân tích a và b ra thừa số nguyên tố
b) Tìm ƯCLN(a,b) ,rồi tìm ƯC(a,b)
a)
\(72=2^3.3^2\)
\(96=2^5.3\)
b)
\(ƯCLN\left(72,96\right)=2^3.3=24\)
\(\RightarrowƯC\left(72,96\right)=Ư\left(24\right)=\left\{1;2;3;4;6;8;12;24\right\}\)