Những câu hỏi liên quan
Xem chi tiết
LH
6 tháng 7 2021 lúc 14:14

1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)

Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)

Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)

\(\Rightarrow A=4\)

2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)

Bình luận (0)
NL
6 tháng 7 2021 lúc 14:09

Bài 2 :

a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)

Vậy ...

b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

\(\Rightarrow y=3\)

Vậy ...

Bình luận (0)
NT
Xem chi tiết
LA
24 tháng 9 2016 lúc 19:21

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\)\(\frac{d}{a+b+c}\)

\(\Rightarrow1+\frac{a}{b+c+d}=1+\frac{b}{a+c+d}=1+\frac{c}{a+b+d}=1+\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Mà: \(a+b+c+d\ne0\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

\(\Rightarrow A=1+1+1+1=4\)

Bình luận (0)
CT
24 tháng 9 2016 lúc 19:24

số đo slaf

nhe sbn

bài dài 

lắm mình

vhir tiện ghi

thế này thôi

Bình luận (0)
TS
17 tháng 5 2017 lúc 16:56

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow1+\frac{a}{b+c+d}=1+\frac{b}{a+c+d}=1+\frac{c}{a+b+d}=1+\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Mà :\(a+b+c+d=0\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

\(\Rightarrow A=1+1+1+1=4\)

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết
NL
7 tháng 8 2018 lúc 9:03

đặt \(k=\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)

\(\Rightarrow\frac{a+c}{b+d}=k\)

mà \(k=\frac{a}{b}\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)(đpcm)

b) đặt \(k=\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)

\(\Rightarrow\frac{a-c}{b-d}=k\)

mà \(k=\frac{a}{b}\)

\(\Rightarrow\frac{a-c}{b-d}=\frac{c}{d}\)(đpcm)

Bình luận (0)
LV
Xem chi tiết
PT
14 tháng 1 2016 lúc 8:24

=2 tick mk nha

Bình luận (0)
TH
Xem chi tiết
LA
5 tháng 8 2016 lúc 15:31

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}\)\(=\frac{a+b+c+d}{a+b+c}\)

Do a + b + c + d khác 0 nên: b+c+d = a+c+d = a+b+d = a+b+c  => a = b = c = d

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)\(\left(a=b=c=d\right)\)

\(\Rightarrow A=1+1+1+1=4\)

Bình luận (0)
ND
Xem chi tiết
KK
2 tháng 1 2019 lúc 9:22

Giải: Ta có : 

\(\frac{a+b+c-2011d}{d}=\frac{b+c+d-2011a}{a}=\frac{c+d+a-2011b}{b}=\frac{d+a+b-2011c}{c}\)

=> \(\frac{a+b+c}{d}-2011=\frac{b+c+d}{a}-2011=\frac{c+d+a}{b}-2011=\frac{d+a+b}{c}-2011\)

=> \(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}\)

=> \(\frac{a+b+c}{d}+1=\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1\)

=> \(\frac{a+b+c+d}{d}=\frac{b+c+d+a}{a}=\frac{c+d+a+b}{b}=\frac{d+a+b+c}{c}\)

TH1: a + b + c + d = 0

=> a + b = -(c + d)

    b + c = -(a + d)

 khi đó, ta có : S = \(\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(a+d\right)}\)

                          = \(-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

                          = -4

TH2 : a + b + c + d \(\ne\)0

=> a = b = c = d

khi đó, ta có : S = \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{b+a}+\frac{d+a}{b+c}\)

                          =   1 + 1 + 1 + 1 

                         = 4

Bình luận (0)
NN
Xem chi tiết
DH
22 tháng 8 2017 lúc 13:14

\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{b+a+b}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{b+a+b}{c}=\frac{a+b+c}{d}\)

\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{b+a+b}{c}+1=\frac{a+b+c}{d}+1\)

\(=\frac{b+c+d}{a}+\frac{a}{a}=\frac{c+d+a}{b}+\frac{b}{b}=\frac{b+a+b}{c}+\frac{c}{c}=\frac{a+b+c}{d}+\frac{d}{d}\)

\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

Do đó \(\frac{a+b}{c+d}+\frac{b+c}{c+d}+\frac{c+d}{a+b}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1=3\)

Bình luận (0)
IL
Xem chi tiết
NP
8 tháng 3 2018 lúc 22:42

\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì \(a+b+c+d\ne0\) nên \(b+c+d=a+c+d=a+b+d=a+b+c\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow A=1+1+1+1=4\)

Bình luận (0)
ZZ
2 tháng 9 2018 lúc 14:32

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)
DL
Xem chi tiết