Cho a+b+c = 9 ; a2+b2+c2= 53 , tính ab+ac+bc
khi chia số a cho 9 dư 5, chia số b cho 9 dư 6, chia số c cho 9 dư 4. tìm số dư của (a+b+c) chia 9 và (a-b+c) chia 9
cho ba số a, b, c thỏa mãn abc = 27 và 1/a+1/b+1/c = (a+b+c)/9 Chứng minh (a*2020-9*1010)(b*2020-9*1010)(c*2020-9*1010)=0
Mình đố các bạn : chứng minh rằng số có dạng abc - (a+b+c) chia hết cho 9
(kéo xuống để coi đáp án)
đáp án là : abc - (a+b+c) = 100a +10b + c -(a+b+c)=99a +9b mà 99 và 9 đều chia hết cho 9 nên 99a + 9b chia hết cho 9 hay abc - (a+b+c)
\(\overline{abc}-\left(a+b+c\right)=100a+10b+c-a-b-c=99a+9b=9\left(11a+b\right)⋮9\)
Cho STN a chia cho 9 đc số dư là 4
Cho STN b chia cho 9 đc số dư là 5
Cho STN c chia cho 9 đc số dư là 8
a) CMR a+b chia hết cho 9
b) Tìm số dư của b+c khi chia cho 9
Bài 5: Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9; b) Tìm số dư khi chia b + c cho 9
a) Ta có: a chia 9 dư 4 => đặt a =9n+4
b chia 9 dư 5 => đặt b=9h+5
=> a+b = 9n+4+9h+5 = 9(n+h+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9m+8
=> b+c = 9h+5+9m+8 = 9(h+m+1) +4
=> b+c chia 9 dư 4
Khi chia 1 số a cho 9 được dư là 5,khi chia b cho 9 được dư là 6, chia c cho 9 được dư la 4. Hỏi khi chia a+b cho 9, a+c cho 9 được số dư là bao nhiêu?
Ta chọn một số chia 9 dư 5 6 4 bất kì:ta lấy số 14 15 13 đã chia 9 dư 5 6 4
=>14 +15 : 9 =3,(2) rồi ta lấy 3 x 9 =27 29-27=2
=>14+13 : 9 =3 rồi ta lấy 3 x 9 =27 27 - 27 =0
a+b chia 9 dư 2
a+c chia 9 dư 0
khi nao can noi minh minh tra loi cho
mình là Tùng nhưng lúc đó ko có nick nên mượn nick chị
Cho a, b, c> 0; a+ b+ c= 9
CMR: \(\frac{a^3+b^3}{ab+9}+\frac{b^3+c^3}{bc+9}+\frac{c^3+a^3}{ca+9}\ge9\)
\(\frac{\left(a+b\right)^3}{ab+9}+\frac{2}{3}\left(ab+9\right)+12\ge6a+6b\)
\(\Sigma\frac{a^3+b^3}{ab+9}\ge\frac{1}{4}\Sigma\frac{\left(a+b\right)^3}{ab+9}\ge\frac{1}{4}\left(12\left(a+b+c\right)-\frac{2}{3}\left(\frac{\left(a+b+c\right)^2}{3}+27\right)-36\right)=9\)
Bài 1 : Cho a chia 6 dư 2
b chia 6 dư 2
Chứng tỏ rằng: ( a-b)chia hết cho 6
Bài 2 : Cho a chia cho 9 dư 1
b chia 9 dư 3
c chia 9 dư 5
Chứng tỏ rằng : ( a+b+c) chia hết cho 9
Bài 3: Cho A+B+C=110
A-B-C=2
B-15=C+15
Tìm A;B;C
Bài 4: Cho a chia 5 dư 4
b chia 5 dư 3
c chia cho 5 dư 1
Chứng tỏ rằng : ( a-b-c) chia hết cho 5
bài 1:vì:số dư 2 trừ số dư 2 = số dư 0,0 ko có giá trị
bài 2:vì:số dư 1 cộng số dư 3 cộng số dư 5 = số dư 9,9 chia hết cho 9
bài 3:có lẽ là lỗi đề chứ mình chịu
bài 4:vì:số dư 4 trừ số dư 3 -số dư 1= số dư 0,0ko có giá trị
học tốt bạn nhé
Khi chia 1 số a cho 9 được dư là 5,khi chia b cho 9 được dư là 6, chia c cho 9 được dư la 4. Hỏi khi chia a+b cho 9, a+c cho 9 được số dư là bao nhiêu?
a : 9 dư 5 \(\Rightarrow\) a = 9k + 5 (k \(\in\) N)
b : 9 dư 6 \(\Rightarrow\)b = 9m + 6 (k \(\in\) N)
c : 9 dư 4 \(\Rightarrow\) c = 9n + 4 (k \(\in\) N)
*Xét: a + b = 9k + 9m + 11
\(\Leftrightarrow\) a + b = 9 . (k + m + 1) + 2
\(\Rightarrow\) (a + b) : 9 dư 2.
*Xét: a + c = 9k + 9n + 9
\(\Leftrightarrow\) a + c = 9 . (k + n + 1)
\(\Rightarrow\) (a + c) \(⋮\) 9
\(\Rightarrow\) (a + c) : 9 dư 0.
Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9
b) Tìm số dư khi chia b + c cho 9
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
Câu a: vì tổng của 2 số dư của a+b=9 nên t có : a+b chia hết cho 9 và 4+5 chia hết cho 9 nên suy ra a+b chia hết cho 9 b: dư4