Những câu hỏi liên quan
OC
Xem chi tiết
DN
Xem chi tiết
PN
Xem chi tiết
VU
Xem chi tiết
LL
Xem chi tiết
LL
4 tháng 4 2017 lúc 20:58

giải được công nhận siêu và ngu

Bình luận (0)

đề rắc rối quá

cái nầy thì cậu tự làm đi

Bình luận (0)
BH
6 tháng 4 2017 lúc 7:30

thế ơi mấy đè rùi

Bình luận (0)
DV
Xem chi tiết
DV
28 tháng 6 2015 lúc 22:23

20^2x có tận cùng là 0

12^2x=144^x;2012^2x=4048144^x

xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4

4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4 

suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)

xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6

4948144^2k=(...6)^k có tận cùng là 6

suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)

từ(1) và (2) suy ra không tồn tại số x

Bình luận (0)
PM
4 tháng 1 2019 lúc 20:39

Đinh Tuấn việt chép mạng thề luôn!

nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha

Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là

2012^2x = 4048144^x 

Nhưng đề bài lại nói là 2015^2x  cơ mà ??

Bình luận (0)
PN
Xem chi tiết
MM
2 tháng 12 2021 lúc 9:29

mình học lớp 4 bạn đố như này bố thằng nào trả lời được

Bình luận (1)
 Khách vãng lai đã xóa
LT
Xem chi tiết
H24
Xem chi tiết
ST
10 tháng 8 2018 lúc 15:51

Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau

Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)

\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)

Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết

Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100

Bình luận (0)