Cho abc ≠ 0; a + b = c. Tính giá trị của biểu thức B = (a 2 + b 2 − c 2 )(b 2 + c 2 − a 2 )(c 2 + a 2 − b 2 ) 8a 2 b 2 c 2
A. -1
B. 1
C. 2
D. -2
Cho ab+bc+ca=0, abc khác 0. Chứng minh rằng (a+b)(b+c)(c+a)+abc=0
Cho tam giác ABC câ ABC cân tại A, góc BAC= 1000. D là điểm thuộc miền trong của tam giác ABC sao cho góc DBC=100. góc DCB= 200. Tính góc ADB ?
cho ab+bc+ca=0 và abc khác 0
chứng minh rằng (a+b)(b+c)(c+a)+abc=0
ta có (a+b)(b+c)(c+a)+abc
=(a+b)(bc+ab+c^2+ca)+abc
=(a+b)(bc+ab+ca+c^2)+abc
=(a+b).c^2+abc
=ac^2+bc^2+abc
=c(ac+bc+ab)=c.0=0 (đpcm)
Trong không gian Oxyz cho tam giác ABC có tọa độ các đỉnh là:
A(a; 0; 0), B(0; b; 0), C(0; 0; c)
Chứng minh rằng tam giác ABC có ba góc nhọn.
Ta có: AB → = (−a; b; 0) và AC → = (−a; 0; c)
Vì AB → . AC → = a 2 > 0 nên góc ∠ BAC là góc nhọn.
Lập luận tương tự ta chứng minh được các góc ∠ B và ∠ C cũng là góc nhọn.
Cho A 0 ; 0 ; a , B b ; 0 ; 0 , C 0 ; c ; 0 với abc≠0 . Khi đó phương trình mặt phẳng (ABC) là
A. x a + y b + z c = 1
B. x b + y c + z a = 1
C. x a + y c + z b = 1
D. x c + y b + z a = 1
Chọn đáp án B.
Phương trình mặt phẳng (ABC) là
cho abc >0 và abc=1. CMR:(a-1)/c+(c-1)/b+(b-1)/a>=0
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(a;0;0), B(0;b;0), C(0;0;c) với a b c ≠ 0 . Phương trình mặt phẳng (ABC) là
A. x a + y b + z c + 1 = 0
B. x a + y b + z c = 0
C. x a + y b + z c − 1 = 0
D. a x + b y + c z − 1 = 0
cho tam giác ABC và 3 điểm M, N, P thỏa ;
2MB→ + 3MC→ = 0→
2NC→ + 3NA→ = 0→
2PA→ + 3PB→ = 0→
Chứng minh rằng △ABC và △MNP có cùng trọng tâm
*bạn kí tự vecto vào bài nhé
Gọi trọng tâm tam giác ABC là G
Ta có \(2GB+3GC=2\left(GM+MB\right)+3\left(GM+MC\right)=5GM+2MB+3MC=5GM\)
tượng tự \(2GC+3GA=5GN\)
\(2GA+3GB=5GP\)
cộng vế với vế ta được
\(GA+GB+BC=GN+GM+GP\Leftrightarrow GN+GM+GP=0\)
Vậy G là trọng tâm tam giác MNP
Cho (a2−bc)(b−abc)=(b2−ac)(a−abc);abc≠0;a≠b(a2−bc)(b−abc)=(b2−ac)(a−abc);abc≠0;a≠b
CMR:1a+1b+1c=a+b+c
Cho tam giác ABC có B=600, C=500, AC= 35cm. Tính SABC.