Cho A = 2/n-1 ; B=n+4/n+1
a, Tìm n thuộc số tự nhiên để A,B là P/S
b, Tìm n thuộc số tự nhiên để A,B thuộc số nguyên
Cho An=1/√5(((1+√5)/2)n -((1-√5)/2)n )) CMR A2+2=A1+n∆+An An thuoc N
Bài 1 : Tìm \(n\in N\) sao cho: \(P=1^2+2^2+3^2+...+n^2⋮5̸\)
Bài 2 : Tìm \(a\inℤ\) sao cho : \(Q=a^3-7a^2+4a-14⋮a^3+3\)
Bài 3 : Cho : \(P\left(n\right)=n^{1880}+n^{1840}+n^{1800}\)
\(Q\left(n\right)=n^{20}+n^{10}+1\)
Chứng minh rằng : Với \(n\inℤ\) thì \(P\left(n\right)⋮Q\left(n\right).\)
Bài 4 : Cho \(a\inℕ^∗\). Chứng minh rằng : \(P=\left(a+4\right)\left(a+5\right)\left(a+6\right).....\left(2a+5\right)\left(2a+6\right)⋮2^{a+3}\)
Giúp mình nha mai mình phải nộp rồi.
1) Bằng phương pháp quy nạp, dễ dàng chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\). Do đó, để \(1^2+2^2+...+n^2⋮̸5\) thì \(n\left(n+1\right)\left(2n+1\right)⋮̸5\). Điều này có nghĩa là \(n\equiv3\left(mod5\right)\) hoặc \(n\equiv1\left(mod5\right)\). Tóm lại, để \(1^2+2^2+...+n^2⋮̸5\) thì \(n\equiv3\left(mod5\right)\) hoặc \(n\equiv1\left(mod5\right)\).
2) Ta so sánh \(a^3-7a^2+4a-14\) với \(a^3+3\). Ta thấy \(\left(a^3-7a^2+4a-14\right)-\left(a^3+3\right)\) \(=-7a^2+4a-17=D\). dễ thấy với mọi \(a\inℤ\) thì \(D< 0\) (thực ra với mọi \(a\inℝ\) thì vẫn có \(D< 0\)) nên \(a^3-7a^2+4a-14< a^3+3\), vì vậy \(a^3-7a^2+4a-14⋮̸a^3+3\). Vậy, không tồn tại \(a\inℤ\) thỏa mãn ycbt.
Mình làm 2 bài này trước nhé.
P = 12 + 22 + 32 +...+n2 không chia hết cho 5
P = 1.(2-1) + 2.(3-1) + 3.(4-1)+...+n(n +1 - 1)
P = 1.2-1+ 2.3 - 2+ 3.4 - 3+...+ n(n+1) - n
P = 1.2 + 2.3 + 3.4+ ...+n(n+1) - (1+2+3+...+n)
P = n(n+1)(n+2):3 - (n+1)n:2
P = n(n+1){ \(\dfrac{n+2}{3}\) - \(\dfrac{1}{2}\)}
P = n(n+1)(\(\dfrac{2n+1}{6}\)) không chia hết cho 5
⇒ n(n+1)(2n+1) không chia hết cho 5
⇒ n không chia hết cho 5
⇒ n = 5k + 1; n = 5k + 2; n = 5k + 3; n = 5k + 4
th1: n = 5k + 1 ⇒ n + 1 = 5k + 2 không chia hết cho 5 ; 2n + 1 = 10n + 3 không chia hết cho 5 vậy n = 5k + 1 (thỏa mãn)
th2: nếu n = 5k + 2 ⇒ n + 1 = 5k + 3 không chia hết cho 5; 2n + 1 = 10k + 5 ⋮ 5 (loại)
th3: nếu n = 5k + 3 ⇒ n + 1 = 5k +4 không chia hết cho 5; 2n + 1 = 10k + 7 không chia hết cho 5 (thỏa mãn)
th4 nếu n = 5k + 4 ⇒ n + 1 = 5k + 5 ⋮ 5 (loại)
Từ những lập luận trên ta có:
P không chia hết cho 5 khi
\(\left[{}\begin{matrix}n=5k+1\\n=5k+3\end{matrix}\right.\) (n \(\in\) N)
3) Ta có \(P\left(n\right)=n^{1800}\left(n^{80}+n^{40}+1\right)\). Đặt \(n^{10}=a\) với \(a\inℕ\), khi đó \(P\left(a\right)=a^{180}\left(a^8+a^4+1\right)\) còn \(Q\left(a\right)=a^2+a+1\). Ta sẽ chứng minh \(a^8+a^4+1⋮a^2+a+1,\forall a\inℕ\). Thật vậy, xét hiệu:
\(D=\left(a^8+a^4+1\right)-\left(a^2+a+1\right)=a^8+a^4-a^2-a\). Phân tích D thành nhân tử, ta được:
\(D=a\left(a-1\right)\left(a^2+a+1\right)\left(a^4+a+1\right)\)\(⋮a^2+a+1\)
Từ đây suy ra được \(a^8+a^4+1⋮a^2+a+1,\forall a\inℤ\). Vậy ta có đpcm
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
a)Cho A= 1/2^2+1/3^2+...+1/n^2.CMR A<1
b)Cho B=1/2^2+1/4^2+1/6^2+...+1/(2n)^2.CMR B<1/2
c)Cho C=3/4+8/9+15/16+...+n^2-1/n^2.CMR C<n-2
chứng minh rằng số A(n) = 2^3n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2chứng minh rằng số A(n) = 2^3^n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2)
70.Cho n là số tự nhiên. Chứng minh rằng :
a) (n+10)(n+15) chia hết cho 2.
b) n(n+1)(n+2) chia hết cho 2 và 3
c) n(n+1)(2n+1) chia hết cho 2 và 3
76. Cho A = 13! - 11!
a) A có chia hết cho 2 không ?
b) A có chia hết cho 5 không ?
c) A có chia hết cho 155 không ?
70.a,nếu n chẵn thì n+10 chẵn chia hết cho 2,nếu n lẻ thì n+15 chẵn chia hết cho 2(vì bất kì một số nào nhân với số chẵn đều ra số chẵn)
làm tương tự vậy là được thui
A=13!-11!=11!.(12.13-1)=11!.155=1.2.3.4.5.....11.155
vì trong tích có các thừa soos2,5,155 nên A chia hết cho 2,5,155
70.Cho n là số tự nhiên. Chứng minh rằng :
a) (n+10)(n+15) chia hết cho 2.
b) n(n+1)(n+2) chia hết cho 2 và 3
c) n(n+1)(2n+1) chia hết cho 2 và 3
76. Cho A = 13! - 11!
a) A có chia hết cho 2 không ?
b) A có chia hết cho 5 không ?
c) A có chia hết cho 155 không ?
Vì n là số tự nhiên nên sảy ra 2 trường hợp
+ n là số chẵn thì n có dạng 2a
Thay n = 2a ta có : (n + 10) ( n + 15) = (2a + 10)(n + 15)
= 2(a + 5)(n + 15) chia hết cho 2
+ n là số lẻ thì n có dạng 2a + 1
Thay n = 2a + 1 ta có : (n + 10)(n + 15) = (2a + 11)(2a + 16)
= 2(2a + 11)(a + 8) chia hết cho 2
Vậy với mọi số tự nhiên n thì (n + 10)(n + 15) chia hết cho 2 (đpcm)
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Cho A = (n -1) (n-1) (n2-1)(n thuộc Z )1) CM:A chia hết 3
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia hết cho 3
nếu A chia hết cho 3 dư 1 => n-1 chia hết cho A => A chia hết cho 3
Nếu n :3 dư 2 => n+1 chia hết cho 3 => a chia hết cho 3
Vậy A chia hết cho 3 với mọi n
Bài 1: Cho a+b=5. Tính
D= a^3+b^3+3ab(a^2+b^2)+6a^2b^2
Bài 2: Cho n€Z. CMR:
C=(n+1) (n+2) (n+3) (n+4) +1
E= n^2 +(n+1)^2 +n^2(n+1)^2
Là số chính phương
Bài 2 :
a) C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )
<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1
<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1
Đặt t = n2 + 5n + 5
Suy ra : C = ( t - 1 ).( t + 1 ) + 1
=> C = t2 - 1 + 1
<=> C = t2 hay C = ( n2 + 5n + 5 )2
Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương
( đpcm )
b) E = n2 + ( n + 1 )2 + n2 ( n + 1 )2
<=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2
<=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2
<=> E = [ n( n + 1 ) + 1 ]2
<=> E = ( n2 + n + 1 )2
Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương
( đpcm )