Bài 8: Cho hình thang ABCD ( AB // CD, AD > BC ) có đường chéo AC vuông góc cạnh bên CD; AC là tia phân giác góc BAD và góc D = 60 ĐỘ.
a, CM; ABCD là hình thang cân.
b, Tính độ dài cạnh AD; biết chu vi hình thang bằng 20 cm.
Bài 6 Cho hình thang ABCD(AB//CD,AD>BC)có đường chéo AC vuông góc với cạnh bên CD ,BAC=CAD và D=60
a,cm ABCD là hình thang cân
b,Tính độ dài cạnh đáy AD, biết chu vi hình thang bằng 20cm
BÀI 8; CHO hình thang ABCD ( AD // BC, AD > BC ) có đường chéo AC vuông góc cạnh bên CD; AC là tia phân giác góc BAD và góc D = 60 độ
a, CM: ABCD là hình thang cân.
b, Tính độ dài cạnh AD; biết chu vi hình thang bằng 20 cm.
BÀI 8; CHO hình thang ABCD ( AD // BC, AD > BC ) có đường chéo AC vuông góc cạnh bên CD; AC là tia phân giác góc BAD và góc D = 60 độ
a, CM: ABCD là hình thang cân.
b, Tính độ dài cạnh AD; biết chu vi hình thang bằng 20 cm.
Cho hình thang cân ABCD (AB//CD) biết AB=26cm, AD=10cm và đường chéo AC vuông góc với cạnh bên BC. Tính diện tích của hình thang ABCD
Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!
Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.
Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:
$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$
Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:
$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)
⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$
⇒ $\(CH=DK=\dfrac{120}{13}\)$
Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:
$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$
Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$
Cho hình thang ABCD(AD//BC,AD>BC) có đường chéo AC vuông góc với cạnh bên CD,AC là tia phân giác góc BAD và D=60 độ
a,cm ABCD là hình thang cân
b,tính độ dài cạnh AD,biết chu vi hình thang bằng 20 cm
a) Xét \(\Delta ACD\) vuông tại C, có:
\(CAD+ADC=90\) độ \(\Rightarrow ADC=90độ-ADC=90-60=30độ\)
AC là pgiac BAD=> \(CAD=CAB=\dfrac{1}{2}BAD\Rightarrow BAD=2CAD=2.30=60độ\)
Hình thang ABCD, có: BAD=CAD=60 độ=> ABCD là hình thang cân
b) \(\Delta ACD\) vuông tại C có : DAC=30 độ => \(CD=\dfrac{1}{2}AD\) (đlí)
BC//AD=>BCA=CAD (so le trong)
Mà BAC=DAC (cm a)
=> BAC=BCA => tam giác ABC cân tại A =>BC=AB
ABCD là hthang cân => AB=CD
Ta có: \(P_{ABCD}=AB+BC+CD+AD=CD+CD+CD+2CD=20\)
\(\Leftrightarrow CD=\dfrac{20}{5}=4\left(cm\right)\Rightarrow AD=2.CD=2.4=8\left(cm\right)\)
Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, góc BAC = góc CAD và góc D=60 độ a,CM ABCD Là hình thang cân b,Tính độ dài cạnh đáy AD biết chu vi hình thang =20cm
Cho hình thang ABCD có AB//CD. Biết AB=26cm; CD=10cm và đường chéo AC vuông góc với cạnh bên BC. Tính diện tích hình thang ABCD.
Giải ra giúp mình
cho hình thang cân ABCD (AB// CD,AB>CD) có CD=a, góc A + góc B =1/2x( góc C+ góc D) đường chéo AC vuông góc với cạnh bên BC . Tính diện tích hình thang
cho hình thang ABCD (AD//BC,AD>BC) có đường chéo AC vuông góc với cạnh bên CD,ˆBAC=ˆCAD và ˆD=60
a)chứng minh ABCD là hình thang cân
b)tính độ dài đáy AD,biết chu vi hình thang bằng 20cm