Tìm x, y, z bt; 2x= - 3y = 4z và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
mn lm giùm
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Y+Z+1/X = X+Y+2/Y =X+Y-3=1/X+Y+Z
2. TÌM X BT
1+2Y/18 = 1+4Y/24 = 1+6Y/6X
Tìm x,y,z bt
x/3=y/4,y/5=z/6 và z-y=40
\(\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow z=\dfrac{5y}{6}\)
mà \(z-y=40\)
\(\Rightarrow\dfrac{5y}{6}-y=40\)
\(\Rightarrow-\dfrac{y}{6}=40\)
\(\Rightarrow y=-240\Rightarrow z=40+y=40-240=-200\)
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow x=\dfrac{3y}{4}=\dfrac{3.\left(-240\right)}{4}=-180\)
Vậy \(\left\{{}\begin{matrix}x=-180\\y=-240\\z=-200\end{matrix}\right.\)
tìm x, y , z bt:
x-y=-9; y-z=-10;z+x=11
\(\hept{\begin{cases}x-y=-9\\y-z=-10\\z+x=11\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y-9\\z=10+y\\10+y+y-9=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y-9\\z=10+y\\2y=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\z=15\\y=5\end{cases}}}\)
Cho x,y,z > 0 thỏa Đk : (x+y+z)xyz =1 Tìm GTNN của BT sau :
P = (x+y)(x+z)
Cho x,y,z > 0 thỏa Đk : (x+y+z)xyz =1 Tìm GTNN của BT sau :
P = (x+y)(x+z)
tìm x,y,z bt -4/8=x/-10=-7/y=z/-21
\(\Rightarrow\frac{-1}{2}=\frac{x}{-10}=-\frac{7}{y}=\frac{z}{-21}\)
\(\Rightarrow x=-\frac{1}{2}.-10=5\)
\(y=-\frac{7}{-\frac{1}{2}}=14\)
\(z=-\frac{1}{2}.21=-\frac{21}{2}\)
tìm 3 số tỉ lệ với các số 5;2,3;8,1 bt tổng 2 số đầu lớn hơn số thứ 3 là 8
tìm 3 số x,y,z bt x/5=y/-7, y/4=z/15 và x+3y-4z=18
Tìm x,y,z bt:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}\)(*)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}\)(Dãy tỉ số bằng nhau)
\(=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\)
Thay vào (*), ta có:
\(\frac{\left(\frac{1}{2}-x\right)+1}{x}=\frac{\left(\frac{1}{2}-y\right)+2}{y}=\frac{\left(\frac{1}{2}-z\right)-3}{z}=2\)
\(\Rightarrow\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{5}{2}-y\\2z=-\frac{5}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=-\frac{5}{6}.\)
1) Rút gọn bt:
(x+y+z)3+(x-y-z)3+(y-x-z)3+(z-y-x)3
2)Tìm x,y,z t/m: 9x2+y2+2z2-18x+4z-6y+20=0
Đặt x+y−z=a;x−y+z=b;−x+y+z=cx+y−z=a;x−y+z=b;−x+y+z=c thì a + b + c = x + y + z
A=(a+b+c)3−a3−b3−c3A=(a+b+c)3−a3−b3−c3
=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)
=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]
=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)
=(b+c)(3a(a+b)+3c(a+b))=3(a+b)(b+c)(c+a)
Tìm X,Y,Z,T bt:
x+y+z=-6,Y+z+t=-9,z+t+x=-8,t+y+x=-7
X= -1
Y= -2
Z= -3
T= -4
Bạn tick mình , mình sẽ cho lời giải, không cần lời giải cũng tick luôn nhé