(a)/(b)=(c-a)/(b-c ); 1/c=x(1/a+1/b) tìm x với a,b,c khác 0 ; b khác c
Phân tích đa thức thành nhân tử:
A)(a+b)(b+c)(c-a)+(b+c)(c+a)(a-b)+(c+a)(a+b)(b-c)
B)(b+c)(c+a)(b-a)+(b+c)(a+b)(a-c)+(a-b)(b-c)(a-c)
C)(a-b)(b-c)(a-c)+(a+b)(c+a)(c-b)+(b+c)(c+a)(b-a)
D)(a-b)(b-c)(a-c)+(a+b)(b+c)(a-c)+(a+b)(a+c)(c-b)
fcregffjhhkjhgfyheruhyjkhgjdtjhygf
A=(a+b)(b+c)(c+a)+abcA=(a+b)(b+c)(c+a)+abc
=a2b+ab2+a2c+ac2+b2c+bc2+2abc+abc=a2b+ab2+a2c+ac2+b2c+bc2+2abc+abc
=ab(a+b+c)+bc(a+b+c)+ca(a+b+c)=ab(a+b+c)+bc(a+b+c)+ca(a+b+c)
=(a+b+c)(ab+bc+ca)=(a+b+c)(ab+bc+ca)
Vậy....
\((a+b)(b+c)(c-a)+(b+c)(c+a)(a-b)+(c+a)(a+b)(b-c)\)
\(=(b+c)(ac-a^2+bc-ab)+(b+c)(ac-bc+a^2-ab)+(c+a)(a+b)(b-c)\)
\(=(b+c)(ac-a^2+bc-ab+ac-bc+a^2-ab)+(c+a)(a+b)(b-c)\)
\(=(b+c)(2ac-2ab)+(c+a)(a+b)(b-c)\)
\(=(2ab+2ac)(c-b)-(c+a)(a+b)(c-b)\)
\(=(c-b)(2ab+2ac-a^2-ab-ac-bc)\)
\(=(c-b)(b-a)(a-c)\)
a(b+c−a)2+b(c+a−b)2+c(a+b−c)2+(a+b−c)+(b+c−a)+(c+a−b)a(b+c−a)2+b(c+a−b)2+c(a+b−c)2+(a+b−c)+(b+c−a)+(c+a−b)
giúp mình làm bài này đi rrooiif mình giúp cho
cho tam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
Biến đổi vế trái thành phải
a) a (b-c) + c (a-b) = b (a-c)
b) a(b-c) -b (a+c) = (a+b) -(-c)
c) a (b+c) - b (a-c) = (a+b) c
d) a (b-c) - a(b+d) = a (c+d)
e) (a-b) (c+d) - (a+d) (b+c)= (a-c) (d-b)
a) a(b-c)+c(a-b)=ab-ac+ca-cb=ab-cb=b(a-c)
b) a(b-c)-b(a+c)=ab-ac-ab-bc=-ac-bc=-c(a+b)
c) a(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)
d) a(b-c)-a(b+d)=ab-ac-ab-ad=-ac-ad=-a(a+d)
a) a(b - c) + c(a - b) = ab - ac + ac - bc = ab - bc = b(a - c)
b) a(b - c) - b(a + c) = ab - ac - ab - bc = -ac - bc = (a + b). (-c)
c) a(b + c) - b(a - c) = ab + ac - ab + bc = ac + bc = (a + b)c
d) a(b - c) - a(b + d) = ab - ac - ab - ad = -ac - ad = -a(c + d)
a) a(b-c)+c (a-b)=ab-ac+ca-cb=cb=b(a-c)
b) a(b-c)-b(a+c)=ab-ac-ab-bc=ac-bc=-c(a+b)
c) a(b+c)-a(b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)
d) a(b-c)-a(b+d)=ab-ac-ab-ad=ac-ab-ad=ac-ad=a(a+d)
rút gọn:
a) -a-(b-a-c)=
d)-(a-b+c)-(a+b+c)=
e) (a+b)-(a-b)+(a-c)-(a+c)=
b) -(a-c)-(a-b+c)=
c)b-(b+a-c)=
f) (a+b-c)+(a-b+c)-(b+c-a)-(a-b-c)=
a)-b+c
d)-2a-2c
e)2b-2c
b)-2a+b
c)-a+c
f)a
-a-b+a+c=-b+c
-a+b-c-a-b-c=-2a-2c
a+b-a-b+a-c-a-c=-2c
-a-c+a-b-c=-2c+b
b-b-a+c=-a+c
a+b-c+a-b+c-b+c-a-a+b+c=2c
Bài 1: CMR
a/ 2*(a^3+ b^3+ c^3- 3abc)=(a+b+c)*((a-b)^2+(b-c)^2+(c-a)^2)
b/ (a+b)*(b+c)*(c+a)+4abc=c*(a+b)^2+a*(b+c)^2+b*(c+a)^2
c/ (a+b+c)^3=a^3+b^3+c^3+3*(a+b)*(b+c)*(c+a)
Bài 2: Cho a+b+c=4m.CMR:
a/ 2ab+ a^2+ b^2- c^2=16m^2- 8mc
b/ (a+b-c/2)^2+(a-b+c/2)^2+(b+c-a/2)^2=a^2+b^2+c^2-4m^2
Ta có :
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b) - 3abc
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)
=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]
Chứng minh rằng :
a/(a-b)+(c-d)=(a+c)-(b+d)
b/ (a-b)-(c-d)=(a+d)-(b+c)
c/a-(b-c)=(a-b)+c=(a+c)-b
d/(a-b)-(b+c)+(c-a)-(a-b-c)=-(a+b-c)
e/-(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
a, \(\left(a-b\right)+\left(c-d\right)=\left(a+c\right)-\left(b+d\right)\)
\(a-b+c-d=a+c-b-d\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
b, \(\left(a-b\right)-\left(c-d\right)=\left(a+d\right)-\left(b+c\right)\)
\(a-b-c+d=a+d-b-c\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
c, \(a-\left(b-c\right)=\left(a-b\right)+c=\left(a+c\right)-b\)
\(a-b+c=a-b+c=a+c-b\)
\(\Rightarrowđpcm\)
d, \(\left(a-b\right)-\left(b+c\right)+\left(c-a\right)-\left(a-b-c\right)=-\left(a+b-c\right)\)
\(a-b-b-c+c-a-a+b+c=-a-b+c\)
\(-a-b+c=-a-b+c\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
e, \(-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)
\(a-b-c+b+c-1=b-c+6-7+a-b+c\)
\(a-1=-1+a\Rightarrow a-1=a+\left(-1\right)\Rightarrow a-1=a-1\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
Cho các tập hợp A = {a; b; c; d}; B = {b; d; e}; C = {a; b; e}. Trong các đẳng thức sau
a. A ∩ (B \ C) = (A ∩ B) \ (A ∩ C).
b. A \ (B ∩ C) = (A \ B) ∩ (A \ C).
c. A ∩ (B \ C) = (A \ B) ∩ (A \ C).
d. A \ (B ∩ C) = (A \ B) ∪ (A \ C).
Số đẳng thức sai là
A. 1
B. 3
C. 2
D. 4
Đáp án: C
A ∩ B = {b; d}; A ∩ C = {a; b}; B ∩ C = {b; e}
A \ B = {a; c}; A \ C = {c; d}; B \ C = {d}
A ∪ B = {a; b; c; d; e}; A ∪ C = {a; b; c; d; e}
A ∩ (B \ C) = {d}. (A ∩ B) \ (A ∩ C) = {d}.
A \ (B ∩ C) = {a; c; d}. (A \ B) ∪ (A \ C) = {a; c; d}.
(A \ B) ∩ (A \ C) = {c}.
a. A ∩ (B \ C) = (A ∩ B) \ (A ∩ C) ={d} ⇒ a đúng.
b. A \ (B ∩ C)= {a; c; d} (A \ B) ∩ (A \ C)={c} ⇒ b sai.
c. A ∩ (B \ C) ={d} (A \ B) ∩ (A \ C)={c} ⇒ c sai
d. A \ (B ∩C) = (A \ B) ∪ (A \ C)= {a; c; d} ⇒ d đúng.
Tính một cách hợp lí:
a/a+b+c=a+b+c/a+b/a+b+c+a+b+c/b+c/a+b+c+a+b+c/a-a/b-a/c-b/c-c/a-c/b
Thu gọn các biểu thức:
a) (a + b - c) + (b + c - a) + (a +c - b); b) (a - b) + (b - c + a) + (c - b).
c) (2a - b + c) + (b - c + a) + (c - 2a + b); d) (a - c + b) + (b - c - a) - a - b - c;
\( a)\left( {a + b - c} \right) + \left( {b + c - a} \right) + \left( {a + c - b} \right)\\ = a + b - c + b + c - a + a + c - b\\ = a + b + c\\ b)\left( {a - b} \right) + \left( {b - c + a} \right) + \left( {c - b} \right)\\ = a - b + b - c + a + c - b\\ = 2a + b\\ c)\left( {2a - b + c} \right) + \left( {b - c + a} \right) + \left( {c - 2a + b} \right)\\ = 2a - b + c + b - c + a + c - 2a + b\\ = a + b + c\\ d)\left( {a - c + b} \right) + \left( {b - c - a} \right) - a - b - c\\ = a - c + b + b - c - a - a - b - c\\ = - a - b - 3c \)
a) (a + b - c) + (b + c - a) + (a +c - b)
= a + b - c + b + c - a + a + c - b
= (a - a + a) + (b - b + b) + (c - c + c)
= a + b + c
b) (a - b) + (b - c + a) + (c - b)
= a - b + b - c + a + c - b
= (a + a) + (b - b - b) + (c - c)
= 2a - b
c) (2a - b + c) + (b - c + a) + (c - 2a + b)
= 2a - b + c + b - c + a + c - 2a + b
= (2a - 2a) + (b - b + b) + (c - c + c)
= b + c
d) (a - c + b) + (b - c - a) - a - b - c
= a - c + b + b - c - a - a - b - c
= (a - a - a) + (b + b - b) - (c + c + c)
= b - 2a - 3c
Chúc bạn học tốt@@
a/ \((a + b - c) + (b + c - a) + (a +c - b)\)
\(=a+b-c+b+c-a+a+c-b\)
\(=\left(a-a\right)+\left(b-b\right)+\left(-c+c\right)+a+b+c\)
\(=a+b+c\)
b/ \(\text{ (a - b) + (b - c + a) + (c - b)}\)
\(=a-b+b-c+a+c-b\)
\(=\left(a+a\right)+\left(-b+b\right)-\left(c-c\right)-b\)
\(=2a-b\)
c/ \(\text{(2a - b + c) + (b - c + a) + (c - 2a + b)}\)
\(=2a-b+c+b-c+a+c-2a+b\)
\(=\left(2a-2a\right)-\left(b-b\right)+\left(c-c\right)+a+b+c\)
\(=a+b+c\)
d) \(\text{(a - c + b) + (b - c - a) - a - b - c}\)
\(=a-c+b+b-c-a-a-b-c\)
\(=\left(a-a\right)+\left(b-b\right)-\left(c+c+c\right)-a+b\)
\(=-\left(3c\right)-a+b\)
rút gọn các biểu thức sau
a,A=(a-b)+(a+b-c)-(a-b-c)
b,B=(a-b)-(b-c)+(c-a)-(a-b-c)
c,C=(-a+b+c)-(a-b+c)-(a-b+c)-(-a+b-c)