Những câu hỏi liên quan
PT
Xem chi tiết
MH
8 tháng 9 2021 lúc 10:02

a) Ta có:  a<b

                =>a.n<b.n

               =>a.n+a.b< b.n +a.b

               =>a(b+n)<b(a+n)

               =>a/b<a+n/b+n

Vậy nếu a<b thì a/b <a+n / b+n

  b) Ta có :  a>b

=>a.n>b.n

=>a.n+a.b>b.n+a.b

=>a(b+n)>b(a+n)

=>a/b>a+n/b+n

   Vậy a>b thì a/b> a+n/b+n

  c) Ta có : a=b

=>a.n=b.n

=>a.n+ a.b =b.n+a.b

=>a(b+n)=b(a+n)

=>a/b=a+n/b+n

  Vậy a= b thì a/b =a+n/b+n

Bình luận (0)
NH
Xem chi tiết
HN
Xem chi tiết
TL
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
H24
15 tháng 9 2017 lúc 12:36

mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự

Bình luận (0)
HS
11 tháng 7 2019 lúc 17:02

Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)

\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0

Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)

Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)

\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)

Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)

Bình luận (0)
BP
1 tháng 9 2020 lúc 21:22

Ta có:a/b=a.(b+n)

                =a.b+a.n/b.(b+n)

a+n/b+n=(a+n).b/(b+n).b

             =a.b+b.n/b.(b+n)

-->a/b<a+n/b+n

       

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AH
31 tháng 5 2024 lúc 0:48

Lời giải:

Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$

$\Rightarrow {a}{b}>\frac{a+n}{b+n}$

Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$

$\Rightarrow {a}{b}=\frac{a+n}{b+n}$

Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$

$\Rightarrow {a}{b}<\frac{a+n}{b+n}$

 

Bình luận (0)
BH
Xem chi tiết
PT
13 tháng 10 2016 lúc 20:55

a) (ab)n = ab.ab.ab.....ab (n thừa số ab) = (a.a.a.....a).(b.b.b....b) (n thừa số a ; n thừa số b) = an.bn

Câu b bạn chứng minh tương tự.

Bình luận (0)
VN
Xem chi tiết
NT
6 tháng 6 2017 lúc 16:01

+) Xét trường hợp \(\dfrac{a}{b}>1\Rightarrow\) \(a>b\Rightarrow an>bn\) (do \(n\in\) N*)\(\Rightarrow an+ab>bn+ab\Rightarrow a.\left(b+n\right)>b.\left(a+n\right)\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)

+) Xét trường hợp \(\dfrac{a}{b}\le1\Rightarrow\)\(a\le b\Rightarrow an\le bn\) (do \(n\in\) N*)

\(\Rightarrow an+ab\le bn+ab\Rightarrow a.\left(b+n\right)\le b.\left(a+n\right)\Rightarrow\dfrac{a}{b}\le\dfrac{a+n}{b+n}\)

Vậy nếu \(\dfrac{a}{b}>1\) thì \(\dfrac{a}{b}>\dfrac{a+n}{b+n}\); nếu \(\dfrac{a}{b}\le1\) thì \(\dfrac{a}{b}\le\dfrac{a+n}{b+n}\).

Bình luận (5)