Những câu hỏi liên quan
TQ
Xem chi tiết
AN
20 tháng 12 2017 lúc 13:54

Trước tiên chứng minh:

\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)

\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+b^4+a^3b+ab^3=\left(a+b\right)\left(a^3+b^3\right)\)

Áp dụng bài toán được

\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)

\(\ge\frac{1}{2}\left(x+y+y+z+z+x\right)=x+z+y=2018\)

Bình luận (0)
H24
Xem chi tiết
HA
Xem chi tiết
NV
13 tháng 10 2016 lúc 15:18

a) Ta có: x/2 = y/3 => x/8 = y/12 (1)

y/4 = z/5 => y/12 = z/15 (2)

Từ (1) và (2) => x/8 = y/12 = z/15

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2

x/8 = 2 => x = 2 . 8 = 16

y/12 = 2 => y = 2 . 12 = 24

z/15 = 2 => z = 2 . 15 = 30

Vậy x = 16; y = 24 và z = 30

b) Ta có: x/2 = y/3 => x/10 = y/15 (1)

y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)

Từ (1) và (2) => x/10 = y/15 = z/12

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7

x/10 = -7 => x = -7 . 10 = -70

y/15 = -7 => y = -7 . 15 = -105

z/12 = -7 => z = -7 . 12 = -84

Vậy x = -70; y = -105 và z = -84

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5

x/2 = 5 => x = 5 . 2 = 10

y/3 = 5 => y = 5 . 3 = 15

z/4 = 5 => z = 5 . 4 = 20

Vậy x = 10; y = 15 và z = 20.

Bình luận (0)
QL
Xem chi tiết
HM
16 tháng 9 2023 lúc 21:48

a) Ta có:

\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)

Vậy  \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} =  - 4\)

Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96

Bình luận (0)
MT
Xem chi tiết
NT
28 tháng 8 2015 lúc 17:54

bạn đúng đề:

\(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}=\frac{36}{12}=3\)

\(\frac{x-5}{3}=3=\frac{x}{3}=3=9\Rightarrow x-5=9=14\Rightarrow x=14\)

\(\frac{y-4}{4}=3=\frac{y}{4}=3=12\Rightarrow y-4=12\Rightarrow16\)=> y=16

\(\frac{z-3}{5}=3=\frac{z}{5}=3=15\Rightarrow z-3=15=18\Rightarrow z=18\)

Bình luận (0)
CM
Xem chi tiết

b) \(\frac{x-1}{2}=\frac{2x-2}{4}\)

\(\frac{y-2}{3}=\frac{3y-6}{9}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z+3-2-6}{9}=\frac{50+3-2-6}{9}=\frac{45}{9}=5\)=>x-1=5.2=10

=>x=11

y-2=5.3=15

=>y=17

z-3=5.4=20

=>z=23

Vậy (x;y;z)=(11;17;23)

Bình luận (0)
 Khách vãng lai đã xóa
TC
10 tháng 11 2019 lúc 8:39

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+x-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x+y+z khác 0).Do đó x+y+z = 0.5

Thay kq này vào bài ta được:

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)

Tức là : \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)

Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
MU
8 tháng 9 2015 lúc 16:18

Đỗ Ngọc Hải nhưg ko bt cách lm ^^ đúng ko Miki Thảo

Bình luận (0)
MT
8 tháng 9 2015 lúc 16:17

nhưng áp dụng tính chất mik biết mà

Bình luận (0)
NH
8 tháng 9 2015 lúc 16:24

Làm cho câu 1 vậy, các câu sau tương tự

\(\frac{x}{2}=\frac{y}{3}\Rightarrow x=y.\frac{2}{3};\frac{y}{2}=\frac{z}{4}\Rightarrow z=y.2\)

=> x+y+z = \(y.\frac{2}{3}+y+y.2=46\)

\(y.\left(\frac{2}{3}+1+2\right)=46\)

\(y.3\frac{2}{3}=46\)

=> \(y=12\frac{6}{11}\)

=> \(x=12\frac{6}{11}.\frac{2}{3}=8\frac{4}{11}\)

=> \(z=12\frac{6}{11}.2=25\frac{1}{11}\)

Bình luận (0)
DN
Xem chi tiết
H24
9 tháng 10 2015 lúc 20:20

a) Ta có : x/2=y/3; y/5=z/4 => 

             = x/10=y/15 ; y/15= z/12

           => x/10= y/15=z/12

Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)

+) Vì x/10 =(-7) => x=(-70)

+) Vì y/15 =(-7) => y=(-105)

+) Vì z/12 =(-7) => z=(-84)

NHẤN ĐÚNG NHA BẠN !

 

b)

Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7

Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7

                            = 2.x/6 = 3.y/12 = z/7

Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:

2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7

                              =186/11

Từ đó tính được x,y,z nha

NHẤN ĐÚNG NHA BẠN 

Bình luận (0)
TN
30 tháng 9 2017 lúc 20:57

bay gio o so thu nguoi ta cho hut thuoc roi

Bình luận (0)
PD
Xem chi tiết
ST
30 tháng 7 2018 lúc 14:59

a, \(\frac{x}{y+z+1}=\frac{y}{x+z+3}=\frac{z}{x+y-4}=\frac{x+y+z}{y+z+1+x+z+3+x+y-4}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=>\(x+y+z=\frac{1}{2};\frac{x}{y+z+1}=\frac{1}{2};\frac{y}{x+z+3}=\frac{1}{2};\frac{z}{x+y-4}=\frac{1}{2}\)

=>\(\hept{\begin{cases}y+z+1=2x\\x+z+3=2y\\x+y-4=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+3=3y\\x+y+z-4=3z\end{cases}\Rightarrow\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+3\\3z=\frac{1}{2}-4\end{cases}}}\Rightarrow\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{7}{2}\\3z=\frac{-7}{2}\end{cases}}\)

đến đây dễ rồi

b, =>(x-18)(x+16)=(x+4)(x-17)

=>x2+16x-18x-288=x2-17x+4x-68

=>x2-2x-288-x2+13x+68=0

=>11x-220=0

=>11x=220

=>x=20

Bình luận (0)
AT
Xem chi tiết