Biết\(\frac{a}{a'}+\frac{b'}{b}=1\);\(\frac{b}{b'}+\frac{c'}{c}=1\)CMR abc+a'b'c'=1
rút gọn bt biết a,b,c dương ; ab=1 và a+b khác 0
\(\frac{1}{\left(a+b\right)^3}.\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}.\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
Thu gọn biểu thức A = \(\frac{\frac{1}{a}+\frac{2}{b}}{a}+\frac{\frac{1}{b}+\frac{2}{c}}{b}+\frac{\frac{1}{c}+\frac{2}{a}}{c}\),biết \(a,b,c\in Z;a+b+c=0;abc\ne0\)
\(=\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{2}{ac}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(A=\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{2}{ac}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Linh không biết a + b + c = 0 để làm gì?
a,Tìm a,b,c thuộc Z sao cho \(\frac{x}{6}-\frac{2}{y}=\frac{1}{30}\)
b,Tìm a,b thuộc N biết \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
c,Tìm a,b,c thuộc N biết \(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
Tìm x:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)biết a+b+c=1 và \(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}=\frac{1}{4}\)
ta có
1/b+c +1/c+a +1/a+b=1/4
=>(a+b+c)(1/b+c + 1/c+a +1/a+b)=a+b+c.1/4
=>a+b+c/b+c + a+b+c/c+a +a+b+c/a+b=1/4 (a+b+c =1)
=>1+a/b+c +1+b/c+a +1+c/a+b=1/4
=>a/b+c +b/c+a +c/a+b=-11/4
Bài 1: Sắp xếp các phân số theo thứ tự tăng dần:
1*)\(\frac{30303040404}{50505060606},\frac{444111}{666111},\frac{3001}{5002}\)
2*)\(\frac{20162016}{30233023},\frac{20162017}{30233025},\frac{20162018}{30233026}\)
3*)1,\(\frac{b}{a},\frac{d}{c},\frac{bd}{ac},\frac{b+d}{a+c}\)(Biết a,b,c,d nguyên dương và \(1< \frac{a}{b}< \frac{c}{d}\)
4*)\(\frac{1}{2},\frac{a-b}{a^2-b^2},\frac{ab}{a^2+b^2},\frac{a^2+b^2}{\left(a+b\right)^2}\)(Biết a,b,c,d nguyên dương)
Tìm a;b;c biết :
\(\frac{1}{a}+\frac{1}{b+c}=\frac{1}{2}\)
\(\frac{1}{b}+\frac{1}{c+a}=\frac{1}{3}\)
\(\frac{1}{c}+\frac{1}{a+b}=\frac{1}{4}\)
Bài 1; So sánh 2 số A và B ,biết rằng
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49..50}\)
\(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Bài 2 : Cho \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Biết rằng \(a+b+c=7\)và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{7}{10}\)
Hãy so sánh \(S\)và \(1\frac{8}{11}\)
Bài 1 :
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\left(1\right)\)
\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)
Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)
Bài 2:
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)
\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)
\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)
\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)
Chúc bạn học tốt ( -_- )
Bài 1:
ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)(1)
ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)
\(=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)
\(\Rightarrow B>1\)(2)
Từ (1);(2) => A<B
Bài 2:
ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow S=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
thay số: \(S=7.\frac{7}{10}-3\)
\(S=4\frac{9}{10}-3\)
\(S=1\frac{9}{10}=\frac{19}{10}\)
mà \(1\frac{8}{11}=\frac{19}{11}\)
\(\Rightarrow\frac{19}{10}>\frac{19}{11}\)
\(\Rightarrow S>\frac{19}{11}\)
\(\Rightarrow S>1\frac{8}{11}\)
Tìm các số a, b, c biết : \(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{1}{a+b+c}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2=\frac{1}{a+b+c}\)
Có: \(2=\frac{1}{a+b+c}\Rightarrow a+b+c=\frac{1}{2}\)
Xét \(\frac{b+c+1}{a}=2\Rightarrow b+c+1=2a\)
\(\Rightarrow a+b+c+1=3a\)
\(\Rightarrow\frac{1}{2}+1=3a\)
\(\Rightarrow3a=\frac{3}{2}\)
\(\Rightarrow a=\frac{1}{2}\)
Xét \(\frac{a+c+2}{b}=2\Rightarrow a+c+2=2b\)
\(\Rightarrow a+b+c+2=3b\)
\(\Rightarrow\frac{1}{2}+2=3b\)
\(\Rightarrow\frac{5}{2}=3b\)
\(\Rightarrow b=\frac{5}{6}\)
Xét \(\frac{a+b-3}{c}=2\Rightarrow a+b-3=2c\)
\(\Rightarrow a+b+c-3=3c\)
\(\Rightarrow\frac{1}{2}-3=3c\)
\(\Rightarrow\frac{-5}{2}=3c\)
\(\Rightarrow c=\frac{-5}{6}\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(\frac{1}{2};\frac{5}{6};\frac{-5}{6}\right)\)
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(T/C...)
\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}=0,5\)
\(\Rightarrow\frac{b+c+1}{a}=2\Rightarrow\frac{0,5-a+1}{a}=2\Rightarrow1,5-a=2a\Rightarrow a=\frac{1}{2}\)
\(\Rightarrow\frac{a+c+2}{b}=2\Rightarrow\frac{0,5-b+2}{b}=2\Rightarrow2,5-b=2b\Rightarrow b=\frac{5}{6}\)
\(\Rightarrow c=0,5-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)
Chứng minh rằng
a) \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) biết abc=1
b) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Theo bài ra ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(\frac{a}{ab+a+1}=\frac{a}{ab+a+abc}\left(1=abc\right)=\frac{1}{b+1+bc}\)(chia cả tử lẫn mẫu cho a) (1)
\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{1+bc+b}\)(Nhân cả tử lẫn mẫu cho b) (2)
Do đó ta có :
\(=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}=\frac{1+bc+b}{bc+b+1}=1\)(đpcm)
tìm a,b,c thuộc N biết
a)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
b)\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}=\frac{1}{3}\)
ai làm dúng và nhanh nhất mình sẽ tk cho