`25x^2 +10x+1-49`
`(a+b)xy+ab^2`
`5xy-40a^3 b^3 xy`
phân tích thành phân tử
`25x^2 +10x+1-49`
`(a+b)xy+ab^2`
`5xy-40a^3 b^3 xy`
phân tích thành phân tử
25x² + 10x + 1 - 49
= (5x)² + 2.5x + 1² - 7²
= (5x + 1)² - 7²
= (5x + 1 - 7)(5x + 1 + 7)
= (5x - 6)(5x + 8)
--------
5xy - 40a³b³xy
= 5xy(1 - 8a³b³)
= 5xy(1 - 2ab)(1 + ab + 4a²b²)
Cho tứ giác ABCD, biết AD và BC cắt nhau tại E, AB và CD cắt nhau tại F. Các tia phân giác của góc E và góc F cắt nhau tại I. CMR: góc EIF = góc A cộng góc C chia 2.
Mình cần gấp tối đi học rồi. Thanks.
Cho tam giác ABC có trung tuyến AM , Gọi I là trung điểm AM , D là giao điểm BI và AC . Chứng minh
a , AD = 1/2 DC
b , So sánh BD và ID
Gọi K là trung điểm của CD
a: Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của CD
Do đó: MK là đường trung bình
=>MK//BD
hay ID//MK
Xét ΔAMK có
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
=>AD=DK=KC
=>AD=1/2DC
b: Xét ΔAMK có
I là trung điểm của AM
D là trung điểm của AK
Do đó: ID là đường trung bình
=>ID=MK/2
hay MK=2ID
Ta có: MK là đường trung bình của ΔBDC
nên MK=BD/2
=>BD/2=2ID
hay BD=4ID
Một cano xuôi dòng từ bến A đến bến B hết 4 giờ và ngược dòng từ bến B về A hết 5 giờ. Tính khoảng cách giữa 2 bến A và B , biết vận tốc dòng nước là 3 km/h.
Gọi vận tốc ca nô là x
=> vận tốc xuôi dòng là x + 3
=> vận tốc ngược dòng là x - 3
Khoảng cách từ A đến B là (x + 3) . 4
Khoảng cách từ B đến A là : (x - 3) .5
=> (x + 3) . 4 = (x - 3) .5
=> 4x + 12 = 5x - 15
=> 12 + 15 = 5x - 4x
=> x = 27
Vậy khoảng cách AB là (27 + 2) . 4 = 116 km
[Lớp 8]
Bài 1. Giải phương trình sau đây:
a) \(7x+1=21;\)
b) \(\left(4x-10\right)\left(24+5x\right)=0;\)
c) \(\left|x-2\right|=2x-3;\)
d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)
Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:
\(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)
Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)
Bài 4. Giải bài toán bằng cách lập phương trình:
Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút.
Tính quãng đường AB.
Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.
a) Chứng minh: ΔHAC đồng dạng với ΔABC;
b) Chứng minh AH2=AD.AB;
c) Chứng minh AD.AB=AE.AC;
d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)
Bài 4 :
24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ
Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0
Suy ra quãng đường AB là 36x(km)
Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)
Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)
Ta có phương trình:
\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)
Vậy quãng đường AB dài 36.2 = 72(km)
Bài 3 :
\(A = -x^2 + 2x + 9 = -(x^2 -2x - 9) \\= -(x^2 - 2x + 1 + 10) = -(x^2 -2x + 1)+ 10\\=-(x-1)^2 + 10\)
Vì : \((x-1)^2 \geq 0\) ∀x \(\Leftrightarrow -(x-1)^2 \)≤ 0 ∀x \(\Leftrightarrow -(x-1)^2 + 10\) ≤ 10
Dấu "=" xảy ra khi và chỉ khi x - 1 = 0 ⇔ x = 1
Vậy giá trị nhỏ nhất của A là 10 khi x = 1
Tìm x biết : 2x-y/5 = 3y-2z/15 và x+z=2y
\(\frac{2x-y}{5}=\frac{3y-2z}{15}=\frac{2x-y-3y+2z}{5-15}=\frac{2\left(x+z\right)-4y}{-10}=\frac{2.2y-4y}{-10}=\frac{0}{-10}=0\)
Thiếu điều kiện, nếu giải ra sẽ được rất nhiều x nha bạn !!!
Cho hình vuông ABCD; Trên tia đối tia BA lấy E, trên tia đối tia CB lấy F sao cho AE = CF
a) Chứng minhEDF vuông cân
b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi I là trung điểm EF. Chứng minh O, C, I thẳng hàng
a) Δ EDF vuông cân
Ta có ΔADE =ΔCDF (c.g.c)
ΔEDF cân tại D
Mặt khác:ΔADE =ΔCDF (c.g.c)
=> góc E1 = góc F2
Mà góc E1 + E2 + F1 = 90 0 => F2+E2+E1 = 900
=> góc EDF = 90 0
. VậyEDF vuông cân
b)Chứng minh O, C, Ithẳng
Theo tính chất đường chéo hình vuông => CO là trung trực BD MàEDF vuông cân
=>DI =\(\frac{1}{2}\) EF
Tương tự BI =\(\frac{1}{2}\) EF =>DI = BI => I thuộc dường trung trực của DB => I thuộc đường thẳng CO hay O, C, I thẳng hàng
a) xet tam giac AED va tam giac DCF ta co
AD=CD ( ABCD la hinh vuong) AE=CF ( gt) goc DAE= goc DCF (=90)
--> tam giac ABD =tam giac DCF ( c=g-c)
--> DE=DF
ta co : goc ADE+ goc EDC =90 (2 goc ke phu)
goc ADE= goc CDF ( tam giac ADE= tam giac CDF)
--> goc EDC+goc CDF=90--> goc EDF=90--> tam giacEDF vuong tai D
ma DE=DF ( cmt)
nen tam giac EDF vuong can tai D
b) xet tam giac DEF vuong tai D ta co : DI la duong trung tuyen ung voi canh huyen EF ( I la trung diem EF) --> DI=1/2 EF
xet tam giac BEF vuong tai B ta co: BI la duong trung tuyen ung voi canh huyen EF ( I la trung diem EF)==> BI=1/2 EF
---> DI=BI
xet tam giac DIB ta co : DI=BI ( cmt)-> tam giac DIB can tai I
xet tam giac DIB can tai I ta co : IO la duong trung tuyen *( O la trung diem BD )==> IO la duong cao--> IO vuong goc BD
ta co : CA vuong goc BD tai O ( ABCD la hinh vuong)
---> CÔ và IO cùng vuông góc BD tại O--> CÓ trúng IO--> Ở,C,I thẳng hàng
1/ Cho tam giác ABC vuông tại A (AB < ABC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a/ Chứng minh tứ giác AMIN là hình chữ nhật
b, Gọ D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi
c, Cho AC=20cm, AC=25cm. Tính diện tích tam giác ABC
d, Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC = 1/3
2/ Cho tam giác ABC cân tại A, đường cao AH. Gọ M là trung điểm cảu AB, E là điểm đối xứng với H qua M.
a,Chứng minh tứ giác AHBE là hình chữ nhật
b, Chứng minh tứ giác AEHC là hình bình hành
c, Gọi N là trung điểm của AC. Chứng minh ba đường thẳng AH, CE và MN đồng quy
d,CE cắt AB tại K. Chứng minh rằng AB=3AK
Ta có hình vẽ:
a/ Ta có: EM = MH (E đối xứng với H qua M);
AM = MB (M là trung điểm AB)
H = 900 (AH vuông góc với BC)
=> AHBE là hình chữ nhật
b/ Vì AHBE là hình chữ nhật
=> AE = BH và AE // BH
Mà tam giác ABC cân; AH là đường cao
=> BH = HC
=> AE = HC; AE // HC
=> AEHC là hình bình hành.
c/ Ta có: N là trung điểm AC; M là trung điểm AB => MN là đường trung bình
=> MN // BC mà AH vuông góc BC
=> AH vuông góc MN => AH cắt MN (1)
Mà AEHC là hình bình hành
=> AH cắt CE (hai đường chéo) (2)
Từ (1) và (2) => AH,CE,MN đồng quy
d/ Gọi AH, CE, MN đồng quy tại O
HI // AB cắt CE tại I
Xét hai tam giác AKO và HIO:
=> t/gAKO = t/gHIO
=> AK = HI
HI là đường TB của t/g CKB => HI = 1/2 CK
=> AK = 1/2 CK hay 3AK = AB
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
Cho tam giác ABC vuông tại A .Gọi E,F lần lượt là trung điểm của các cạnh AB,BC.
a) Chứng minh tứ giác ACED là hình thang vuông
b) Gọi F là điểm đối xứng với E qua D. Chứng minh tứ giác ACEF là hình bình hành
c) Chứng minh CE=BF
Bạn nào giải giúp mình bài này với
a) xét tam giác ABC có:
. D là trung điểm của AB (gt)
. E là tđ của BC (gt)
vậy: DE là đường trung bình của tam giác ABC
--> DE//AC VÀ DE=\(\frac{AC}{2}\)
--> ACED là hình thang ( tứ giác có 2 cạnh đói //)
mà góc BAC=900 (tam giác ABC vuông tại A)
--> ACED là hình thang vuông( hình thang có 1 góc vuông)
b) Ta có: F đối xứng với E qua D (gt)
--> D là trung điểm của EF
--> EF=2DE
Ta lại có: DE=\(\frac{AC}{2}\) (cmt)
--> AC=2DE
Xét tứ giác ACEF có:
. DE//AC ( cmt)
--> EF//AC (D ϵ EF)
. EF=AC ( cùng = 2DE )
Vậy: ACEF là hbh (tứ giác có 2 cạnh đối vừa //, vừa = nhau)
c) Ta có: E là tđ của BC (gt)
--> CE=\(\frac{BC}{2}\) (1)
Ta lại có: E là tđ của BC (gt)
--> AE là đường trung tuyến
--> AE=\(\frac{BC}{2}\)
Xét tứ giác AEBF có:
.D là tđ của AB (gt)
. D là tđ của EF (cmt)
Vậy: AEBF là hbh( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)
Ta có: AE= BF ( cạnh đối hbh AEBF)
mà AE=\(\frac{BC}{2}\) (cmt)
--> BF=\(\frac{BC}{2}\) (cùng = AE) (2)
Từ(1) và (2)
--> CE=BF (cùng =\(\frac{BC}{2}\) )
Cách chứng minh của mình hơi dài nha ^.^
cho mình sửa lại chỗ này chút Gọi D,E lần lượt chứ k phải E,F
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
ảnh đẹp đó nhưng hổng có liên quan