Phân tích thành nhân tử: A=2cos3a + cos2a +sina
Phân tích thành nhân tử: A=2cos3a + cos2a +sina
Lời giải:
$A=2\cos ^3a+\cos ^2a-\sin ^2a+\sin a=2\cos ^3a+2\cos ^2a-1+\sin a$
$=2\cos ^2a(\cos a+1)-(1-\sin a)$
$=2(1-\sin ^2a)(\cos a+1)-(1-\sin a)$
$=2(1-\sin a)(1+\sin a)(\cos a+1)-(1-\sin a)$
$=(1-\sin a)[2(\sin a+1)(\cos a+1)-1]$
$=(1-\sin a)(2\sin a\cos a+2\sin a+2\cos a+1)$
$=(1-\sin a)(\sin 2a+2\sin a+2\cos a+1)$
Rút gọn: \(\dfrac{sina+cosa-1}{sina-cosa+1}\)
Rút gọn biểu thức A= (1+cotx)sin^3x+(1+tanx)cos^3x
\(A=sin^3x\cdot\left(1+\dfrac{cosx}{sinx}\right)+cos^3x\left(1+\dfrac{sinx}{cosx}\right)\)
\(=sin^2x\left(sinx+cosx\right)+cos^2x\left(cosx+sinx\right)\)
=cosx+sinx
Giúp mình câu c/m lượng giác vs mng ơi!!!
b: \(VT=\left[\dfrac{\dfrac{sinx}{cosx}+sinx}{1+cosx}\right]^2+1\)
\(=\left[\dfrac{sinx\left(\dfrac{1}{cosx}+1\right)}{cosx\left(1+\dfrac{1}{cosx}\right)}\right]^2+1\)
=1/cos^2x=VP
Mọi người giúp em giải bài này ạ, em cảm ơn Bài 1: Rút gọn biểu thức: A= sin 2 x + sin x 1 + cos 2 x + cos x sin2x+sinx1+cos2x+cosx B= c o t a ( 1 + sin 2 a cos a − c o s a ) cota(1+sin2acosa−cosa) C= 1 + cos x + cos 2 x + cos 3 x 2 cos 2 x + cos x − 1 1+cosx+cos2x+cos3x2cos2x+cosx−1 D= 2 cos ( π 2 − x ) ⋅ sin ( π 2 + x ) ⋅ tan ( π − x ) cot ( π 2 + x ) ⋅ sin ( π − x ) − 2 cos x 2cos(π2−x)⋅sin(π2+x)⋅tan(π−x)cot(π2+x)⋅sin(π−x)−2cosx E= cos 2 x ⋅ cot 2 x + 3 cos 2 x − cot 2 x + 2 sin 2 x cos2x⋅cot2x+3cos2x−cot2x+2sin2x F = sin 2 x + sin 2 x tan 2 x cos 2 x + cos 2 x tan 2 x F=sin2x+sin2xtan2xcos2x+cos2xtan2x G = 1 + c o s 2 a − c o s a 2 s i n a − s i n a G=1+cos2a−cosa2sina−sina H= s i n 4 ( π 2 + α ) − c o s 4 ( 3 π 2 − α ) + 1 sin4(π2+α)−cos4(3π2−α)+1 Bài 2: chứng minh a) cho Δ A B C c h ứ n g m i n h s i n A + B 2 = c o s C 2 ΔABCchứngminhsinA+B2=cosC2 b) chứng minh biểu thức sau độc lập với biến x: A= c o s x + c o s ( x + 2 π 3 ) + c o s ( x + 4 π 3 ) cosx+cos(x+2π3)+cos(x+4π3) c)cho Δ Δ ABC chứng minh : sin A+sin B+ sin C= 4 c o s A 2 c o s B 2 c o s C 2 4cosA2cosB2cosC2 d)CMR: c o s 2 a 1 + s i n 2 a = c o s a − s i n a c o s a + s i n a cos2a1+sin2a=cosa−sinacosa+sina e) CMR: E = s i n α + c o s α c o s 3 α = 1 + t a n α + t a n 2 α + t a n 3 α E=sinα+cosαcos3α=1+tanα+tan2α+tan3α f) CMR Δ Δ ABC cân khi và chỉ khi s i n B = 2 c o s A s i n C sinB=2cosAsinC g) CM: 1 − c o s x + c o s 2 x s i n 2 x − s i n x = c o t x 1−cosx+cos2xsin2x−sinx=cotx h)CM: ( c o s 3 x − c o s x ) 2 + ( s i n 3 x − s i n x ) 2 = 4 s i n 2 x (cos3x−cosx)2+(sin3x−sinx)2=4sin2x k) CMR trong tam giac ABC ta có: s i n 2 A + s i n 2 B + s i n 2 C = 4 s i n A ⋅ s i n B ⋅ s i n C sin2A+sin2B+sin2C=4sinA⋅sinB⋅sinC Bài 3: giải bất phương trình: a) ( 1 − 3 x ) ( 2 x 2 + 1 ) − 2 x 2 − 3 x + 5 > 0 (1−3x)(2x2+1)−2x2−3x+5>0 b) 2 x + 1 ( x − 1 ) ( x + 2 ) ≥ 0 2x+1(x−1)(x+2)≥0 c) ( 3 x − 2 ) ( x 2 − 9 ) x 2 − 4 x + 4 ≤ 0 (3x−2)(x2−9)x2−4x+4≤0 d) ( 2 x 2 + 3 x ) ( 3 − 2 x ) 1 − x 2 ≥ 0 (2x2+3x)(3−2x)1−x2≥0 e) ( x 2 + 2 x + 1 ) ( x − 1 ) 3 − x 2 (x2+2x+1)(x−1)3−x2 f) 2 x + 1 − x 2 + x + 6 ≥ 0 2x+1−x2+x+6≥0
Cho cotx = -3
tính : A= \(\dfrac{2sin^2x+3sinx.cosx}{sin^2x-7}\)
`cot x = -3 => cos x = -3 sin x`
`=> A = [ 2 sin^2 x + 3 sin x . (-3 sin x ) ] / [ sin^2 x - 7 ( sin^2 x + cos^2 x ) ]`
`<=>A = [ -7 sin^2 x ] / [ sin^2 x - 7 ( sin^2 x + 9 sin^2 x ) ]`
`<=>A = [ -7 sin^2 x ] / [ -69 sin^2 x ]`
`<=> A = 7 / 69`
Cho \(sina=\dfrac{3}{5},cosb=-\dfrac{5}{13}\)và \(\dfrac{\pi}{2}< a,b< \pi\)
Tính \(cos\dfrac{a}{2};sin\dfrac{b}{2};tan\left(a+b\right);sin\left(a-b\right)\)
GIÚP VỚI MÌNH ĐANG CẦN GẤP
pi/2<a,b<pi
=>cos a<0; cos b<0; sin a>0; sin b>0
\(cosa=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5};sina=\sqrt{1-\left(-\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=-3/5:4/5=-3/4; tan b=12/13:(-5/13)=-12/5
\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana\cdot tanb}\)
\(=\dfrac{-\dfrac{3}{4}+\dfrac{-12}{5}}{1-\dfrac{-3}{4}\cdot\dfrac{-12}{5}}=\dfrac{63}{16}\)
sin(a-b)=sina*cosb-sinb*cosa
\(=\dfrac{3}{5}\cdot\dfrac{-5}{13}-\dfrac{-4}{5}\cdot\dfrac{12}{13}=\dfrac{-15+48}{65}=\dfrac{33}{65}\)
Chứng minh rằng những biểu thức sau không phụ thuộc vào đối số
\(E=\dfrac{cos^2x-sin^2y}{sin^2x.sin^2y}-cot^2x.cot^2y\)
GIÚP VỚI MÌNH ĐANG CẦN GẤP
\(E=\dfrac{\left(cosx-siny\right)\left(cosx+siny\right)}{sin^2x\cdot sin^2y}-\dfrac{cos^2x}{sin^2x}\cdot\dfrac{cos^2y}{sin^2y}\)
\(=\dfrac{cos^2x\left(1-cos^2y\right)-sin^2y}{sin^2x\cdot sin^2y}\)
\(=\dfrac{sin^2y\left(cos^2x-1\right)}{sin^2x\cdot sin^2y}=-1\)
Chứng minh rằng
a) \(cos^2\alpha\left(cos^4\alpha+sin^2\alpha.cos^2\alpha+sin^2\alpha+tan^2\alpha\right)=1\)
b) \(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)
c) \(1+sin\alpha+cos\alpha+tan\alpha=\left(1+cos\alpha\right).\left(1+tan\alpha\right)\)
GIÚP VỚI MÌNH ĐANG CẦN GẤP
b: tan^2a-sin^2a
\(=\dfrac{sin^2a}{cos^2a}-sin^2a\)
\(=sin^2a\left(\dfrac{1}{cos^2a}-1\right)\)
\(=sin^2a\cdot\dfrac{1-cos^2a}{cos^2a}=\dfrac{sin^2a}{cos^2a}\cdot sin^2a=sin^2a\cdot tan^2a\)
c: 1+sina+cosa+tan a
\(=1+cosa+sina\left(1+\dfrac{1}{cosa}\right)\)
\(=\left(1+cosa\right)\left(1+\dfrac{sina}{cosa}\right)\)
\(=\left(1+cosa\right)\left(1+tana\right)\)
D=(cos4x-tanx)/cos2x
\(d=\dfrac{\left(cos^4\left(x\right)-tanx\right)}{cos\left(2x\right)}:t=\dfrac{dcos\left(2x\right)-cos^4\left(x\right)}{anx};cos\left(2x\right)\ne0,n\ne0\)
\(\left\{{}\begin{matrix}d=\dfrac{\left(cos^4\left(x\right)-tanx\right)}{cos\left(2x\right)}\\\dfrac{cos^4\left(x\right)-tanx}{cos\left(2x\right)}=d\end{matrix}\right.\)
\(\Leftrightarrow\) \(\dfrac{\left(cos^4\left(x\right)-tanx\right)cos\left(2x\right)}{cos\left(2x\right)}=dcos\left(2x\right);cos\left(2x\right)\ne0\)
\(\Leftrightarrow\) \(cos^4\left(x\right)-antx=dcos\left(2x\right);cos\left(2x\right)\ne0\)
\(\Leftrightarrow\) \(cos^4\left(x\right)-antx-cos^4\left(x\right)=dcos\left(2x\right)-cos^4\left(x\right);cos\left(2x\right)\ne0\)
\(\Leftrightarrow\) \(-antx=dcos\left(2x\right)-cos^4\left(x\right);cos\left(2x\right)\ne0\)
\(\Leftrightarrow\) \(\dfrac{-antx}{-anx}=\dfrac{dcos\left(2x\right)}{-anx}-\dfrac{cos^4\left(x\right)}{-anx};cos\left(2x\right)\ne0,n\ne0\)
\(\Rightarrow\) \(suy\) \(ra\) \(:\) \(d=-\dfrac{dcos\left(2x\right)-cos^4\left(x\right)}{-anx};cos\left(2x\right)\ne0,n\ne0\)