Lời giải:
$A=2\cos ^3a+\cos ^2a-\sin ^2a+\sin a=2\cos ^3a+2\cos ^2a-1+\sin a$
$=2\cos ^2a(\cos a+1)-(1-\sin a)$
$=2(1-\sin ^2a)(\cos a+1)-(1-\sin a)$
$=2(1-\sin a)(1+\sin a)(\cos a+1)-(1-\sin a)$
$=(1-\sin a)[2(\sin a+1)(\cos a+1)-1]$
$=(1-\sin a)(2\sin a\cos a+2\sin a+2\cos a+1)$
$=(1-\sin a)(\sin 2a+2\sin a+2\cos a+1)$