Tìm tất cả các giá trị m để bất phương trình \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\) có nghiệm trên \(\left[0;2\right]\)
Tìm tất cả các giá trị m để bất phương trình \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\) có nghiệm trên \(\left[0;2\right]\)
Ta có \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\Leftrightarrow\left(m+2\right)x+m\ge x^2-2x+1\)
\(\Leftrightarrow m\ge\frac{x^2-4x+1}{x+1}\) (vì \(x\in\left[0;2\right]\)
Xét hàm số \(f\left(x\right)=\frac{x^2-4x+1}{x+1}\) trên đoạn \(\left[0;2\right]\) ta có
\(f'\left(x\right)=\frac{x^2+2x-5}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{6}\)
Lập bảng biến thiên ta được
\(f\left(0\right)=1;f\left(2\right)=-1\)
\(f\left(-1+\sqrt{6}\right)=2\sqrt{6}-6\)
Vậy bất phương trình đã cho có nghiệm thì \(m>\) min (0;2] \(f\left(x\right)=f\left(-1+\sqrt{6}\right)=2\sqrt{6-6}\)
Viết phương trình tiếp tuyến của (C): y= \(\frac{x-2}{x+1}\) biết tiếp tuyến tạo với 2 đường tiệm cận một tam giác có bán kính đường tròn nội tiếp lớn nhất
Đồ thị © có tiệm cận đứng là đường thẳng x=1 và tiệm cận ngang là đường thẳng y=2.Giao điểm của hai tiệm cận là I(1;2)
Gọi M(x0;2x0−3x0−1)∈©
Tiếp tuyến Δ của đồ thị © tại M có phương trình
y=1(x0−1)2(x−x0)+2x0−3x0−1
Giao điểm của Δ với hai tiệm cận của đồ thị © là A(1;2x0−4x0−1)vàB(2x0−1;2)
ta có:IA=|2x0−4x0−1−2|=2|x0−1|
IB=2|x0−1|
Do đó diện tích △IAB là: S=12IAIB=2
Gọi p là nửa chu vi △IAB.Khi đó bán kính đường tròn nội tiếp △IAB là r=Sp=2p
r lớn nhất khi p nhỏ nhất
mặt khác,ta có :2p=IA+IB+AB=IA+IB+IA2+IB2≥2IAIB+2IAIB=4+22
Suy ra: pmin=2+2,dấu bằng xẩy ra ⇔IA=IB⇔2|x0−1|=2|x0−1|⇔[x0=0x0=2
với x0=0,phương trình tiếp tuyến cần tìm là Δ1:y=x+3
với x0=2,phương trình tiếp tuyến cần tìm là Δ2:y=x-1
1/ I=\(\int\limits^1_0\)\(\frac{dx}{\sqrt{3+2x-x^2}}\)
2/J=\(\int\limits^1_0\)\(xln\left(2x+1\right)dx\)
3/K=\(\int\limits^3_2ln\left(x^3-3x+2\right)dx\)
4/I=\(\int\limits^{\frac{\pi}{6}}_0\)\(\frac{tan^4xdx}{cos2x}\)
5/J=\(\int\limits^3_1\)\(\frac{3+lnx}{\left(x+1\right)^2}dx\)
6/K=\(\int\limits^1_0\)\(\frac{\left(2+xe^x\right)}{x^2+2x+1}dx\)
Câu 1)
Ta có \(I=\int ^{1}_{0}\frac{dx}{\sqrt{3+2x-x^2}}=\int ^{1}_{0}\frac{dx}{4-(x-1)^2}\).
Đặt \(x-1=2\cos t\Rightarrow \sqrt{4-(x-1)^2}=\sqrt{4-4\cos^2t}=2|\sin t|\)
Khi đó:
\(I=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{d(2\cos t+1)}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{2\sin tdt}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}dt=\left.\begin{matrix} \frac{2\pi}{3}\\ \frac{\pi}{2}\end{matrix}\right|t=\frac{\pi}{6}\)
Câu 3)
\(K=\int ^{3}_{2}\ln (x^3-3x+2)dx=\int ^{3}_{2}\ln [(x+2)(x-1)^2]dx\)
\(=\int ^{3}_{2}\ln (x+2)d(x+2)+2\int ^{3}_{2}\ln (x-1)d(x-1)\)
Xét \(\int \ln tdt\): Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln t dt=t\ln t-t\)
\(\Rightarrow K=\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x+2)[\ln (x+2)-1]+2\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x-1)[\ln (x-1)-1]\)
\(=5\ln 5-4\ln 4-1+4\ln 2-2=5\ln 5-4\ln 2-3\)
Bài 2)
\(J=\int ^{1}_{0}x\ln (2x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (2x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2dx}{2x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)
Khi đó:
\(J=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2\ln (2x+1)}{2}-\int ^{1}_{0}\frac{x^2}{2x+1}dx\)\(=\frac{\ln 3}{2}-\frac{1}{4}\int ^{1}_{0}(2x-1+\frac{1}{2x+1})dx\)
\(=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2-x}{4}-\frac{1}{8}\int ^{1}_{0}\frac{d(2x+1)}{2x+1}=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\ln (2x+1)}{8}\)
\(=\frac{\ln 3}{2}-\frac{\ln 3}{8}=\frac{3\ln 3}{8}\)
Câu 5)
\(J=\underbrace{\int ^{3}_{1}\frac{3dx}{(x+1)^2}}_{A}+\underbrace{\int ^{3}_{1}\frac{\ln xdx}{(x+1)^2}}_{B}\)
Ta có: \(A=\int ^{3}_{1}\frac{3d(x+1)}{(x+1)^2}=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\frac{-3}{x+1}=\frac{3}{4}\)
\(B=\int ^{3}_{1}\frac{\ln xdx}{(x+1)^2}=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\frac{-\ln x}{x+1}+\int ^{3}_{1}\frac{dx}{x(x+1)}=\frac{-\ln 3}{4}+\left.\begin{matrix} 3\\ 1\end{matrix}\right|(\ln |x|-\ln|x+1|)\)
\(B=\frac{-\ln 3}{4}+(\ln 3-\ln 4)+\ln 2=\frac{3}{4}\ln 3-\ln 2\)
Chứng minh bất đẳng thức :
\(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\) với a,b,c dương khác 1
Ta có :
\(a^{\log_bc}=c^{\log_ba}\Rightarrow a^{\log_bc}+c^{\log_ab}=c^{\log_ba}+c^{\log_ab}\ge2\sqrt{c^{\log_ba}.c^{\log_ab}}=2\sqrt{c^{\log_ba+\log_ab}}\) (1)
Vì \(a,b>1\) nên áp dụng BĐT Cauchy cho 2 số không âm \(\log_ba\) và \(\log_ab\), ta được :
\(\log_ab+\log_ba\ge2\sqrt{\log_ab.\log_ba}=2\) (2)
Từ (1) và (2) \(\Rightarrow a^{\log_bc}+b^{\log_ab}\ge2\sqrt{c^2}=2c\)
hay \(\Rightarrow a^{\log_bc}+c^{\log_ab}\ge2c\)
Chứng minh tương tự ta được :
\(a^{\log_bc}+b^{\log_ca}\ge2a\)
\(b^{\log_ca}+c^{\log_ab}\ge2b\)
\(\Rightarrow2\left(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\right)\ge2\left(a+b+c\right)\)
hay :
\(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge a+b+c\) (*)
Mặt khác theo BĐT Cauchy ta có : \(a+b+c\ge3\sqrt[3]{abc}\) (2*)
Từ (*) và (2*) ta có :
\(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)
Cho trước mặt phẳng \(\left(P\right):x+y-x+1=0\) và 2 điểm \(A\left(-2;1;3\right):B\left(3;-5;6\right)\)
a. Tìm tọa độ điểm C trên mặt (P) sao cho CA + CB nhỏ nhất
b. Tìm điểm D trên mặt phẳng (P) sao cho \(\overrightarrow{DA}+\overrightarrow{DB}\) có độ dài ngắn nhất.
a. Do \(\left(-2\right)+1-3+1=-3< 0\)
và \(4+\left(-5\right)-6+1=-6< 0\)
nên A, B ở về cùng 1 phía của mặt phẳng (P). Do đó điểm \(C\in\left(P\right)\) sao cho \(CA+CB\) nhỏ nhất chính là giao điểm của đoạn AB với mặt phẳng (P), trong đó A' là điểm đối xứng với A qua mặt phẳng (P)
Giả sử \(A'\left(x;y;z\right)\) do A' đối xứng với A qua mặt phẳng (P) nên ta có hệ phương trình :
\(\begin{cases}\frac{x-2}{2}+\frac{y+2}{2}-\frac{zx+2}{2}+1=0\\\frac{x-2}{1}=\frac{y-1}{1}=\frac{z-3}{-1}\end{cases}\)
Giải hệ ta được \(x=0;y=3;z=1\)
Do đó \(A'\left(0;3;1\right)\)
Gọi \(C\left(x;y;z\right)\) là giao điểm của A'B với (P). Khi đó tọa độ của C' thỏa mãn phương tringf của (P) và hai vecto \(\overrightarrow{A'C};\overrightarrow{A'B}\) cùng phương. Do đó, ta có hệ phương trình :
\(\begin{cases}x+y-z+1=0\\\frac{x-0}{4-0}=\frac{y-3}{-5-3}=\frac{z-1}{6-1}\end{cases}\)
Từ phương trình thứ 2 suy ra \(y=-2x+3\) và \(z=\frac{5}{4}x+1\)
Thay vào phương trình thứ nhất ta được \(x=\frac{3}{4}\). Từ đó tìm được \(y=\frac{3}{2}\) và \(z=\frac{31}{16}\)
Vậy điềm \(C\) cần tìm là \(C\left(\frac{3}{4};\frac{3}{2};\frac{31}{16}\right)\)
b. Gọi I là trung điểm của AB. Khi đó \(I\left(1;-2;\frac{9}{2}\right)\) và với mọi điểm D đều có \(\overrightarrow{DA}+\overrightarrow{DB}=2\overrightarrow{DI}\)
Vậy \(D\in\left(P\right):\left|\overrightarrow{DA}+\overrightarrow{DB}\right|\) bé nhất \(\Leftrightarrow\) D là hình chiếu của I trên mặt phẳng (P)
Gọi \(\left(x;y;z\right)\) là tọa độ của hình chiếu điểm I trên (P). Khi đó ta có hệ phương trình :
\(\begin{cases}x+y-z+1=0\\\frac{x-1}{1}=\frac{y+2}{1}=\frac{z-\frac{9}{2}}{-1}\end{cases}\)
Giải hệ ta thu được :
\(x=\frac{5}{2};y=-\frac{1}{2};z=3\)
Vậy điểm \(D\in\left(P\right)\) sao cho \(\overrightarrow{DA}+\overrightarrow{DB}\) có độ dài nhỏ nhất là \(D\left(\frac{5}{2};-\frac{1}{2};3\right)\)
\(\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}\)tớ chưa trình bày được ,giúp mình với!!!
đại học ak, hơi bị lớn đấy, mk chỉ ms lớp 7 thui