Bài 2.1: Khoảng cách từ điểm đến mặt phẳng

ML

Cho trước mặt phẳng \(\left(P\right):x+y-x+1=0\) và 2 điểm \(A\left(-2;1;3\right):B\left(3;-5;6\right)\)

a. Tìm tọa độ điểm C trên mặt (P) sao cho CA + CB nhỏ nhất

b. Tìm điểm D trên mặt phẳng (P) sao cho \(\overrightarrow{DA}+\overrightarrow{DB}\) có độ dài ngắn nhất.

PD
17 tháng 5 2016 lúc 21:41

a. Do \(\left(-2\right)+1-3+1=-3< 0\)

    và  \(4+\left(-5\right)-6+1=-6< 0\)

nên A, B  ở về cùng 1 phía của mặt phẳng (P). Do đó điểm \(C\in\left(P\right)\) sao cho \(CA+CB\) nhỏ nhất chính là giao điểm của đoạn AB với mặt phẳng (P), trong đó A' là điểm đối xứng với A qua mặt phẳng (P)

Giả sử \(A'\left(x;y;z\right)\) do A' đối xứng với A qua mặt phẳng (P) nên ta có hệ phương trình :

\(\begin{cases}\frac{x-2}{2}+\frac{y+2}{2}-\frac{zx+2}{2}+1=0\\\frac{x-2}{1}=\frac{y-1}{1}=\frac{z-3}{-1}\end{cases}\)

Giải hệ ta được \(x=0;y=3;z=1\)

Do đó \(A'\left(0;3;1\right)\)

Gọi \(C\left(x;y;z\right)\) là giao điểm của A'B với (P). Khi đó tọa độ của C' thỏa mãn phương tringf của (P) và hai vecto \(\overrightarrow{A'C};\overrightarrow{A'B}\) cùng phương. Do đó, ta có hệ phương trình :

\(\begin{cases}x+y-z+1=0\\\frac{x-0}{4-0}=\frac{y-3}{-5-3}=\frac{z-1}{6-1}\end{cases}\)

Từ phương trình thứ 2 suy ra \(y=-2x+3\) và \(z=\frac{5}{4}x+1\)

Thay vào phương trình thứ nhất ta được \(x=\frac{3}{4}\). Từ đó tìm được \(y=\frac{3}{2}\) và \(z=\frac{31}{16}\)

Vậy điềm \(C\) cần tìm là \(C\left(\frac{3}{4};\frac{3}{2};\frac{31}{16}\right)\)

 

b. Gọi I là trung điểm của AB. Khi đó \(I\left(1;-2;\frac{9}{2}\right)\) và với mọi điểm D đều có \(\overrightarrow{DA}+\overrightarrow{DB}=2\overrightarrow{DI}\)

Vậy \(D\in\left(P\right):\left|\overrightarrow{DA}+\overrightarrow{DB}\right|\) bé nhất \(\Leftrightarrow\) D là hình chiếu của I trên mặt phẳng (P)

Gọi \(\left(x;y;z\right)\) là tọa độ của hình chiếu điểm I trên (P). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y-z+1=0\\\frac{x-1}{1}=\frac{y+2}{1}=\frac{z-\frac{9}{2}}{-1}\end{cases}\)

Giải hệ ta thu được : 

\(x=\frac{5}{2};y=-\frac{1}{2};z=3\)

Vậy điểm \(D\in\left(P\right)\) sao cho \(\overrightarrow{DA}+\overrightarrow{DB}\) có độ dài nhỏ nhất là \(D\left(\frac{5}{2};-\frac{1}{2};3\right)\)

Bình luận (0)

Các câu hỏi tương tự
NU
Xem chi tiết
DQ
Xem chi tiết
PT
Xem chi tiết
LL
Xem chi tiết
NC
Xem chi tiết
MA
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
TV
Xem chi tiết