Bài 7: Ôn tập chương Hàm số lũy thừa, hàm số mũ và hàm số lôgarit

SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (2)
SK
Hướng dẫn giải Thảo luận (1)

(2x + 2-x)2 = 4x + 4-x + 2 = 23 + 2 = 25

⇒ 2x + 2-x = 5

Trả lời bởi Hiiiii~
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Bảng tóm tắt các tính chất của hàm số lũy thừa trên khoảng (0, +∞)

α > 0

α <0

Đạo hàm

Chiều biến thiên

Hàm số luôn đồng biến

Hàm số luôn nghịch biến

Tiệm cận

Không có

Tiệm cận ngang là Ox

Tiệm cận đứng là Oy

Đồ thị

Đồ thị luôn đi qua điểm (1, 1)


Trả lời bởi Hiiiii~
SK
Hướng dẫn giải Thảo luận (1)

Tính chất đẳng thức:

Với a,b 0, x, y \in R ta có:

a^x.a^y=a^{x+y}

a^x:a^y=a^{x-y}

a^x.b^x=(a.b)^x

a^x.b^x=(a:b)^x

(a^x)^y=a^{xy}=(a^y)^x

Tính chất bất đẳng thức:

Nếu a1: a^xa^y \Leftrightarrow xy Nếu 0a1: a^xa^y \Leftrightarrow xy Trả lời bởi Hai Binh
SK
Hướng dẫn giải Thảo luận (1)

- Tính chất của hàm số mũ y= ax ( a > 0, a# 1).

- Tập xác định: .

- Đạo hàm: ∀x ∈ ,y= axlna.

- Chiều biến thiên Nếu a> 1 thì hàm số luôn đồng biến

Nếu 0< a < 1 thì hàm số luôn nghịch biến

- Tiệm cận: trục Ox là tiệm cận ngang.

- Đồ thị nằm hoàn toàn về phía trên trục hoành ( y= ax > 0, ∀x), và luôn cắt trục tung taih điểm ( 0;1) và đi qua điểm (1;a).

- Tính chất của hàm số lôgarit y = logax (a> 0, a# 1).

- Tập xác định: (0; +∞).

- Đạo hàm ∀x ∈ (0; +∞),y = .

- Chiều biến thiên: Nếu a> 1 thì hàm số luôn đồng biến

Nếu 0< a < 1 thì hàm số luôn nghịch biến

- Tiệm cận: Trục Oy là tiệm cận đứng.

- Đồ thị nằm hoàn toàn phía bên phải trục tung, luôn cắt trục hoành tại điểm (1;0) và đi qua điểm (a;1).



Trả lời bởi Hai Binh
SK
Hướng dẫn giải Thảo luận (1)