Cho nửa đường tròn (O) đường kính AB và C nằm trên nửa đường tròn sao cho. Tia AC cắt tiếp tuyến kẻ từ B với nửa đường tròntại D.
a, Chứng minh \(BC^2\).= AC . CD
b, Cho bán kính đường tròn (O) là 4cm. Tính BD.
Cho nửa đường tròn (O) đường kính AB và C nằm trên nửa đường tròn sao cho. Tia AC cắt tiếp tuyến kẻ từ B với nửa đường tròntại D.
a, Chứng minh \(BC^2\).= AC . CD
b, Cho bán kính đường tròn (O) là 4cm. Tính BD.
sao cho gì vậy bạn?
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>CB\(\perp\)AD
Xét ΔDBA vuông tại B có BC là đường cao
nên \(BC^2=CA\cdot CD\)
b: Bạn bổ sung dữ kiện đề bài đi bạn
Cho tam giác ABC đều, hai đường cao BD và CE cắt nhau ở H, AH cắt BC tại M
a) chứng minh 4 điểm A,D,H,E cùng thuộc một đường tròn
b) chứng minh MD là tiếp tuyến của đường tròn đi qua bốn điểm A,D,H,E
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp đường tròn đường kính AH
b: Gọi O là trung điểm của AH
ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>ADHE nội tiếp (O)
Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH vuông góc BC tại M
ΔABC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Xét tứ giác BEHM có
\(\widehat{BEH}+\widehat{BMH}=180^0\)
=>BEHM là tứ giác nội tiếp
\(\widehat{OEM}=\widehat{OEH}+\widehat{MEH}\)
\(=\widehat{OHE}+\widehat{MBD}\)
\(=\widehat{MHC}+\widehat{MBD}=90^0-\widehat{MCH}+\widehat{MBD}=90^0\)
=>EM là tiếp tuyến của (O)
3. Cho đường tròn (O;3) và điểm A nằm ngoài đường tròn sao cho OA = 5.
Kẻ các tiếp tuyến AB, AC tới đường tròn (B, C là các tiếp điểm). Kẻ đường
kính CD của đường tròn.
a) Tính chu vi của tam giác BCD.
b) Kẻ BH vuông góc với CD tại H. Chứng minh rằng AD đi qua trung điểm
của BH
Giúp em câu C với ạ
Cho tam giác ABC có AB = 5cm, AC = 7cm, BC = 6cm ngoại tiếp đường tròn (O). Đường tròn (O1) bằng tiếp góc A tiếp xúc với cạnh BC ở D, tiếp xúc với phần kéo dài của các cạnh AB, AC lần lượt ở E và F.
a) Chứng minh ba điểm A, O, O1, thẳng hàng
b) Tính độ dài các đoạn AE, AF. BE, CF
Vẽ Hình: Cho đường tròn ( O ; R ) và điểm A nằm ngoài đường tròn ( O ). Từ A kẻ 2 tiếp tuyến AE, AH đến đường tròn ( O ) ( E, H là các tiếp điểm ). EH cắt AO tại M. Kẻ đường kính KH. I là trung điểm của EK. Tia AE cắt tia OI tại B
Cho đường tròn ( O ; R ) và điểm A nằm ngoài đường tròn ( O ). Từ A kẻ 2 tiếp tuyến AE, AH đến đường tròn ( O ) ( E, H là các tiếp điểm ). EH cắt AO tại M
a) Cho biết bán kính R= 5cm và OM= 3cm. Tính độ dài dây EH và đoạn OA
b) C/m : EM = MH
c) Kẻ đường kính KH. I là trung điểm của EK. Tia AE cắt tia OI tại B. C/m BK là tiếp tuyến của đường tròn
d) C/m : OMEI là hcn và BK . AH = R\(^2\)
a,b: Xét (O) có
AE,AH là tiếp tuyến
=>AE=AH và OA là phân giác của góc EOH
AE=AH
OE=OH
Do đó:OA là trung trực của EH
=>OA vuông góc EH tại M và M là trung điểm của EH
ΔEMO vuông tại M
=>MO^2+ME^2=OE^2
=>ME^2=5^2-3^2=16
=>ME=4(cm)
=>MH=2*4=8cm
Xét ΔOEA vuông tại E có EM là đường cao
nên OE^2=OM*OA
=>OA=5^2/3=25/3(cm)
c: ΔOEK cân tại O
mà OB là trung tuyến
nên OB vuông góc KE tại I và OB là phân giác của góc KOE
Xét ΔOKB và ΔOEB có
OK=OE
góc KOB=góc EOB
OB chung
Do đó: ΔOKB=ΔOEB
=>góc OBK=góc OEB=90 độ
=>BK là tiếp tuyến của (O)
d: Xét (O) có
ΔKEH nội tiếp
KH là đường kính
Do đó: ΔKEH vuông tại E
Xét tứ giác OIEM có
góc IEM=góc EIO=góc IOM=90 độ
=>OIEM là hình chữ nhật
(ko cần vẽ hình, giải chi tiết)
Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên đường thẳng d lấy điểm M khác điểm A. Qua điểm M vẽ hai tiếp tuyến ME và MF tới đường tròn (O) (E và F là các tiếp điểm). EF cắt OM và OA lần lượt tại H và K.
1) Chứng minh: H là trung điểm của EF.
2) Chứng minh rằng bốn điểm O, M, A, F cùng thuộc một đường tròn.
3) Chứng minh: \(OK.OA=R^2\)
1: Xét (O) cso
ME,MF là tiếp tuyến
=>ME=MF
mà OE=OF
nên OM là trung trực của EF
=>OM vuông góc EF tại H và H là trung điểm của EF
2: Xét tứ giác OFAM có
góc OFM=góc OAM=90 độ
=>OFAM nội tiếp
3: Xét ΔOFK và ΔOAF có
góc OFK=góc OAF
góc FOK chung
Do đó: ΔOFK đồng dạng với ΔOAF
=>OF/OA=OK/OF
=>OK*OA=R^2