\(\dfrac{3}{x^2-5x}=\dfrac{3}{x\left(x-5\right)}=\dfrac{3.2}{2x\left(x-5\right)}=\dfrac{6}{2x\left(x-5\right)}\)
\(\dfrac{5}{2x-10}=\dfrac{5}{2\left(x-5\right)}=\dfrac{5.x}{2x\left(x-5\right)}=\dfrac{5x}{2x\left(x-5\right)}\)
\(\dfrac{3}{x^2-5x}và\dfrac{5}{2x-10}\)
\(x^2-5x=x\left(x-5\right)\)
\(2x-10=2\left(x-5\right)\)
MTC: \(2x\left(x-5\right)\)
\(\dfrac{3}{x^2-5x}=\dfrac{3.2}{\left(x^2-5x\right).2}=\dfrac{6}{2x\left(x-5\right)}\)
\(\dfrac{5}{2x-10}=\dfrac{5.x}{\left(2x-10\right).x}=\dfrac{5x}{2x\left(x-5\right)}\)
ta có
`x^2-5x=x(x-5)`
`2x-10= 2x(x-5)`
`NTP: 2; 1`
Quy đồng :
`3/(x^2-5x)=(3.2)/((x^2-5x).2)=6/(2x(x-5))`
`5/(2x-10)=(5.1)/((2x-10).1)=5/(2x(x-5))`
Quy đồng mẫu thức thành 2 phân thức sau: a) x phần x3-1 và 1+x phần 1-x
\(\dfrac{x}{x^3-1}=\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{1+x}{1-x}=-\dfrac{x+1}{x-1}=\dfrac{-\left(x+1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
Bài 5
a: MTC=2(x-1)(x-2)
b: MTC=(x+1)(x+2)(x+3)
Bài 4:
a: MTC=2(x-3)(x+3)
b: \(MTC=3x\left(x-5\right)\left(x+5\right)\)
c: \(MTC=\left(x-1\right)\cdot x\cdot\left(x^2+x+1\right)\)
Tính và rút gọn : (Mình cần gấp, giúp mình với ạ)
15: \(=\dfrac{x-4+3x+12+8}{\left(x-4\right)\left(x+4\right)}=\dfrac{4x+16}{\left(x-4\right)\left(x+4\right)}=\dfrac{4}{x-4}\)
16: \(=\dfrac{x-2+3+2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{3x+5}{x^2-4}\)
17: \(=\dfrac{2x-4+2x+4-8}{2\left(x-2\right)\left(x+2\right)}=\dfrac{4x-8}{2\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
19: \(=\dfrac{6x+30+6-2x+4x-20}{\left(x-5\right)\left(x+5\right)}=\dfrac{8x+16}{\left(x-5\right)\left(x+5\right)}\)
18: \(=\dfrac{2x-10+3x+15-x+3}{\left(x-5\right)\left(x+5\right)}=\dfrac{4x+8}{x^2-25}\)
20: \(=\dfrac{2\left(3x-2\right)-3x-2+4}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{6x-4-3x+2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{1}{3x+2}\)
\(a;\dfrac{x}{2x^2+7x-15}va\dfrac{x+2}{x^2+3x-10}va\dfrac{1}{x+5}B;\dfrac{1}{-x^2+3x-2}va\dfrac{1}{x^2+5x-6}va\dfrac{1}{-x^2+4x-3}\)
\(\dfrac{x}{2x^2+7x-15}=\dfrac{x}{\left(x+5\right)\left(2x-3\right)}=\dfrac{x\left(x-2\right)}{\left(x+5\right)\left(2x-3\right)\left(x-2\right)}\)
\(\dfrac{x+2}{x^2+3x-10}=\dfrac{\left(x+2\right)\left(2x-3\right)}{\left(x+5\right)\left(2x-3\right)\left(x-2\right)}\)
\(\dfrac{1}{x+5}=\dfrac{\left(2x-3\right)\left(x-2\right)}{\left(x+5\right)\left(2x-3\right)\left(x-2\right)}\)
b: \(\dfrac{1}{-x^2+3x-2}=\dfrac{-1}{\left(x-1\right)\left(x-2\right)}=\dfrac{-x-6}{\left(x-1\right)\left(x-2\right)\left(x+6\right)}=\dfrac{\left(-x-6\right)\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)\cdot\left(x+6\right)}\)
\(\dfrac{1}{x^2+5x-6}=\dfrac{1}{\left(x+6\right)\left(x-1\right)}=\dfrac{x-2}{\left(x+6\right)\left(x-1\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x+6\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)
\(\dfrac{1}{-x^2+4x-3}=\dfrac{-1}{\left(x-1\right)\left(x-3\right)}=\dfrac{-\left(x-2\right)\left(x+6\right)}{\left(x-1\right)\left(x-3\right)\left(x+6\right)\left(x-2\right)}\)
\(A;\dfrac{5}{2x-4}va\dfrac{4}{3x-9}va\dfrac{7}{50-25x}B;\dfrac{x}{4+2a}va\dfrac{y}{4-2a}va\dfrac{z}{4-a^2}C;\dfrac{2a}{b^2}va\dfrac{x}{2a+2b}va\dfrac{y}{a^2-b^2}\)
\(a;\dfrac{1}{4x}va\dfrac{3}{6y}b;\dfrac{xy}{8}va\dfrac{y}{15}c;\dfrac{x}{2y}va\dfrac{y}{2x}\)
a: 1/4x=3y/12xy
3/6y=6x/12xy
b: xy/8=15xy/120
y/15=8y/120
c: x/2y=x^2/2xy
y/2x=y^2/2xy
b: xy/8=15xy/120
y/15=8y/120
c: x/2y=x^2/2xy
y/2x=y^2/2xy
\(\dfrac{x+4}{x^2-4x}+\dfrac{4}{x^2+4x}-\dfrac{x-20}{16-x^2}\)
cíu mn ơii
\(=\dfrac{x+4}{x\left(x-4\right)}+\dfrac{4}{x\left(x+4\right)}+\dfrac{x+20}{\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{x^2+8x+16+4x-16+x^2+20x}{x\left(x+4\right)\left(x-4\right)}\)
\(=\dfrac{2x^2+32x}{x\left(x+4\right)\left(x-4\right)}=\dfrac{2x\left(x+16\right)}{x\left(x+4\right)\left(x-4\right)}=\dfrac{2\left(x+16\right)}{\left(x+4\right)\left(x-4\right)}\)
\(=\dfrac{x+4}{x\left(x-4\right)}+\dfrac{4}{x\left(x+4\right)}+\dfrac{x-20}{\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{\left(x+4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}+\dfrac{4\left(x-4\right)}{x\left(x-4\right)\left(x+4\right)}+\dfrac{x\left(x-20\right)}{x\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{x^2+8x+16+4x-16+x^2-20x}{x\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{2x^2-8x}{x\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{2x\left(x-4\right)}{x\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{2}{x+4}\)
\frac{x+3}{x^2-3x}+\frac{3}{x^2+3x}-\frac{2x-18}{9-x^2}
cíu mn ơi
Bạn ơi, đề bài nó bị lỗi rồi ấy, mình tải lại mấy lần rồi mà nó vẫn cứ vầy:
VD mẫu :
Ví dụ 1 : Chứng minh biểu thức sau không phụ thuộc vào biến x
\(M=\dfrac{\left(2x^2-2\right)^2}{\left(x^2-2x+1\right)\left(x^2+2x+1\right)}\) với \(x\ne\pm1\)
Ví dụ 2 : Chứng minh biểu thức sau không phụ thuộc vào biến y
\(N=\dfrac{\left(y+1\right)\left(y^2+5y+6\right)}{\left(y+3\right)\left(y^2+3y+2\right)}\) với \(y\ne-1\) , \(y\ne-2\) , \(y\ne-3\)
Ví dụ 3 : Chứng minh biểu thức sau không phụ thuộc vào x
\(P=\dfrac{xy+2x+2y+4}{x+2}\) với \(x\ne-2\)
BÀI TẬP TỰ LUYỆN
với giá trị nào của x thì \(\dfrac{x^3+27y^3}{x^2-3xy+9y^2}=3.\dfrac{x^3+y^3}{x^2-xy+y^2}\) với mọi giá trị \(y\ne0\) ?
A. x = 0 B. x = 1 C. x = 2 D. x = 3
GIÚP MÌNH VỚI MAI MÌNH PHẢI NỘP BÀI NÀY RỒI :< CHO MÌNH CẢM ƠN TRƯỚC NHA , MÃI YÊU <333❤
VÍ DỤ MẪU:
Ví dụ 1:
\(M=\dfrac{\left(2x^2-2\right)^2}{\left(x^2-2x+1\right)\left(x^2+2x+1\right)}\left(x\ne\pm1\right)\)
\(=\dfrac{\left(2x^2-2\right)^2}{\left(x-1\right)^2.\left(x+1\right)^2}=\dfrac{4\left(x^2-1\right)^2}{\left(x^2-1\right)^2}=4\)
Vậy .......
ví dụ 2:
\(N=\dfrac{\left(y+1\right)\left(y^2+5y+6\right)}{\left(y+3\right)\left(y^2+3y+2\right)}\left(y\ne-1;y\ne-2;y\ne-3\right)\)
\(=\dfrac{y^3+5y^2+6y+y^2+5y+6}{y^3+3y^2+2y+3y^2+9y+6}=\dfrac{y^3+6y^2+11y+6}{y^3+6y^2+11y+6}=1\)
Vậy ............
Ví dụ 3:
\(P=\dfrac{xy+2x+2y+4}{x+2}\left(x\ne-2\right)\)
\(=\dfrac{x\left(y+2\right)+2\left(y+2\right)}{x+2}=\dfrac{\left(x+2\right)\left(y+2\right)}{x+2}=y+2\)
Vậy ................
BÀI TẬP TỰ LUYỆN:
\(\dfrac{x^3+27y^3}{x^2-3xy+9y^2}=3.\dfrac{x^3+y^3}{x^2-xy+y^2}\)
\(\Leftrightarrow\dfrac{\left(x+3y\right)\left(x^2-3xy+9y^2\right)}{x^2-3xy+9y^2}=3.\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2-xy+y^2}\)
\(\Leftrightarrow x+3y=3\left(x+y\right)\)
\(\Leftrightarrow x+3y=3x+3y\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Chọn A. x = 0