Bài 1: Phương trình bậc nhất hai ẩn

TT
Xem chi tiết
NH
8 tháng 5 2017 lúc 17:20

cái pt đầu là sao vậy bạn.....?

Bình luận (1)
TT
8 tháng 5 2017 lúc 19:06

oh sr pt đầu là mx+2y=3 mn giải giúp nhé!!!

Bình luận (0)
NH
9 tháng 5 2017 lúc 14:07

\(\left\{{}\begin{matrix}mx+2y=3\\2x-my=11\end{matrix}\right.\)

*khi m=2, ta có hệ phương trình:\(\left\{{}\begin{matrix}2x+2y=3\\2x-2y=11\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}4x=14\\x+y=\dfrac{3}{2}\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=\dfrac{14}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=\dfrac{7}{2}\\y=-2\end{matrix}\right.\)

*giả sử hệ có nghiệm duy nhất với mọi m

=>\(\dfrac{m}{2}\ne\dfrac{2}{-m}\)<=>-m2\(\ne\)4<=>m2\(\ne\)-4

điều này luôn đúng

vậy hệ phương trình luôn có nghiệm duy nhất.

Bình luận (0)
NN
Xem chi tiết
NT
4 tháng 5 2017 lúc 19:51

Phương trình: \(\left(m-1\right)x^2-2mx+m+1=0\left(1\right)\) đk: \(m\ne1\)

Xét phương trình (1) có:

\(\Delta=4m^2-4\left(m-1\right)\left(m+1\right)\)

= \(4m^2-4m^2+4=4\)

Vì 4>0 \(\Leftrightarrow\Delta>0\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1.x_2=\dfrac{m+1}{m-1}\end{matrix}\right.\)

Theo đề bài ta có:

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\)

\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}=0\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}+\dfrac{5}{2}=0\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2}{x_1x_2}-2+\dfrac{5}{2}=0\)

\(\Leftrightarrow\left(\dfrac{2m}{m-1}\right)^2:\dfrac{m+1}{m-1}+\dfrac{1}{2}=0\)

\(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)^2}.\dfrac{m-1}{m+1}+\dfrac{1}{2}=0\)

\(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)\left(m+1\right)}+\dfrac{1}{2}=0\)

\(\Leftrightarrow8m^2+\left(m-1\right)\left(m+1\right)=0\)

\(\Leftrightarrow9m^2-1=0\)

\(\Leftrightarrow m^2=\dfrac{1}{9}\)

\(\Leftrightarrow m=\pm\dfrac{1}{3}\) (tm)

Vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\) thì \(m=\pm\dfrac{1}{3}\)

Bình luận (1)
PA
Xem chi tiết
HN
21 tháng 4 2017 lúc 9:19

Đề không đầy đủ

Bình luận (0)
H24
Xem chi tiết
HV
19 tháng 4 2017 lúc 20:32

-mình không chắc, nhưng hình như là vô nghiệm

Bình luận (5)
MP
23 tháng 4 2017 lúc 15:08

5x - 3y = 700

5x = 700 + 3y

x = 700 + 3y/5 (1)

5x - 3y = 700

-3y = 700 - 5x

y = 700 - 5x/-3 (2)

vậy x = 700 + 3y/5 ; y = 700 - 5x/-3

chỉ giải được vây thôi ; vì trong 2 ẩn chưa biết được ẩn nào cả ; đáng lẽ bài này phải là hệ phương trình . mới giải tìm ẩn được

Bình luận (1)
MP
6 tháng 5 2017 lúc 14:10

có 1 cái phương trình 2 ẩn mà nói là giải hệ

Bình luận (0)