Cho hình bình hành ABCD tâm O. Chứng minh rằng: Với E là điểm bất kì, hãy chứng minh: AB + CE +AD=AE(tất cả đều là vector nha mn)
Cho hình bình hành ABCD tâm O. Chứng minh rằng: Với E là điểm bất kì, hãy chứng minh: AB + CE +AD=AE(tất cả đều là vector nha mn)
\(\overrightarrow{AB}+\overrightarrow{CE}+\overrightarrow{AD}=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+\overrightarrow{CE}=\overrightarrow{AC}+\overrightarrow{CE}=\overrightarrow{AE}\)
CHO TỨ GIÁC ABCD, GỌI M, N LẦN LƯỢT LÀ TRUNG ĐIỂM AB, CD CHỨNG MINH RẰNG:
BC + AD = 2MN = AC + BD ( trên đầu đều có vecto)
Ta có \(2\overrightarrow{MN}=\overrightarrow{MD}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{MB}+\overrightarrow{BC}=\overrightarrow{AD}+\overrightarrow{BC}\)
( do vecto MA + vecto MB = 0 )
Lại có \(2\overrightarrow{NM}=\overrightarrow{NA}+\overrightarrow{NB}=\overrightarrow{NC}+\overrightarrow{CA}+\overrightarrow{ND}+\overrightarrow{DB}=\overrightarrow{CA}+\overrightarrow{DB}\)
( do vecto NC + vecto ND = 0 )
\(\Leftrightarrow2\overrightarrow{MN}=\overrightarrow{AC}+\overrightarrow{BD}\)
Câu 18 : Cho hình bình hành ABDC. Đẳng thức nào sau đây đúng ? A. overline BA - overline BC + overline DC = overline CB B. overline BA - overline BC + overline DC = overline BC C. overline BA - overline BC + overline DC = overline AD D. overline BA - overline BC + overline DC = overline CA
ABDC là hình bình hành
=>\(\overrightarrow{AB}=\overrightarrow{CD};\overrightarrow{AC}=\overrightarrow{BD}\)
A: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\ne\overrightarrow{CB}\)
=>Loại
B: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}\)
\(=\overrightarrow{BA}+\overrightarrow{CB}+\overrightarrow{DC}\)
\(=\overrightarrow{CA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\)<>vecto BC
C: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{AD}\)
=>Loại
D: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{CA}\)
=>Loại
Do đó: Không có đáp án nào đúng
Cho tam giác ABC đều cạnh 3a . a, Tính| Vectơ AB + Vectơ AC | b, H là trung điểm của BC .Tính|Vectơ CA - Vectơ HC |
a: Gọi H là trung điểm của BC
Xét ΔABC có AH là đường trung tuyến
nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AH}\)
ΔABC đều có AH là đường trung tuyến
nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=3a\cdot\dfrac{\sqrt{3}}{2}\)
=>\(2\cdot AH=3a\sqrt{3}\)
=>\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot AH=3a\sqrt{3}\)
b:
Gọi I là trung điểm của AH
I là trung điểm của AH
=>\(IA=IH=\dfrac{3a\sqrt{3}}{2}\)
ΔABC đều
mà AH là đường trung tuyến
nên AH vuông góc BC
ΔIHC vuông tại H
=>\(CI^2=HI^2+HC^2\)
=>\(CI^2=\left(\dfrac{3a\sqrt{3}}{2}\right)^2+\left(1,5a\right)^2=9a^2\)
=>CI=3a
\(\left|\overrightarrow{CA}-\overrightarrow{HC}\right|=\left|\overrightarrow{CA}+\overrightarrow{CH}\right|\)
\(=\left|2\cdot\overrightarrow{CI}\right|=2CI\)
\(=2\cdot3a=6a\)
Cho 4 điểm phân biệt m n p q và vectơ V = vectơ MN + vectơ PM + vectơ NQ khi đó vectơ V =
\(\overrightarrow{V}=\overrightarrow{MN}+\overrightarrow{PM}+\overrightarrow{NQ}\)
\(=\overrightarrow{PM}+\overrightarrow{MN}+\overrightarrow{NQ}\)
\(=\overrightarrow{PM}+\overrightarrow{MQ}=\overrightarrow{PQ}\)
Giúp mình với Cho tam giác ABC có G là trọng tâm , I là trung điểm của BC . Chứng minh rằng a) vectơIB+vectơIC=vectơ0 b)vectơGA+vectơGB+vectơGC=vectơ0
a) \(\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IB}-\overrightarrow{IB}=\overrightarrow{0}\)
b) \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)
\(=2\overrightarrow{GE}+\overrightarrow{GC}=2\overrightarrow{GE}-2\overrightarrow{GE}=\overrightarrow{0}\)
Giúp em câu a và e với ạ em cảm ơn rất nhiều
cho tam giác ABC đều, cạnh bằng 1. phát biểu nào đúng ? ( giải thích dùm mình)
a> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=\sqrt{3}\)
b> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=0\)
c> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=2\)
d> \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=0\)
Gọi M là trung điểm của BC
Ta có: ΔABC đều
mà AM là đường trung tuyến
nên AM\(\perp\)BC tại M
Xét ΔAMB vuông tại M có \(sinB=\dfrac{AM}{AB}\)
=>\(\dfrac{AM}{1}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(AM=\dfrac{\sqrt{3}}{2}\)
Xét ΔABC có AM là đường trung tuyến
nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AM}\)
=>\(\overrightarrow{AB}-\overrightarrow{CA}=2\cdot\overrightarrow{AM}\)
=>\(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=2\cdot AM=2\cdot\dfrac{\sqrt{3}}{2}=\sqrt{3}\)
=>A đúng, B và C đều sai
\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
\(=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|=\left|\overrightarrow{CB}\right|=CB=1\)
=>D sai
Cho 2 vector \(\overrightarrow{a}\) và \(\overrightarrow{b}\) khác \(\overrightarrow{0}\). Khi nào các đẳng thức dưới đây xảy ra:
a) \(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=\left|\overrightarrow{a}+\overrightarrow{b}\right|\)
b) \(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
c) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
d) \(\left|\overrightarrow{a}\right|-\left|\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
a: Đặt \(\overrightarrow{a}=\overrightarrow{AB};\overrightarrow{BC}=\overrightarrow{b}\)
\(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=\left|\overrightarrow{AB}\right|+\left|\overrightarrow{BC}\right|\)=AB+BC
|vecto a+vecto b|=|vecto AB+vecto BC|=AC
AB+BC=AC
=>A,B,C thẳng hàng
=>vecto AB và vecto BC cùng hướng
c: |vecto a+vecto b|=|vecto a-vecto b|
=>vecto a+vecto b=vecto a-vecto b hoặc vecto a+vecto b=vecto b-vecto a
=>vecto b=vecto0 hoặc vecto a=vecto 0