Bài 6: Hệ thức Vi-et và ứng dụng

KC

x^2-2mx+4 =0(1)tìm giá trị của m để phương trình có 2 nghiệm x1 x2 thõa mãn (x1+1)^2 +(x2+1)^2=2 Mn giúp mình với giải chi tiết cho mình nha ❤

TH
28 tháng 5 2021 lúc 19:33

Để pt có 2 nghiệm thì \(\Delta'=m^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).

Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\).

Ta có \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\Leftrightarrow m^2+m-2=0\Leftrightarrow\left(m-1\right)\left(m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(TM\right)\end{matrix}\right.\).

Vậy m = -2.

Bình luận (1)
KC
28 tháng 5 2021 lúc 19:30

Mn ơi giúp mình với ạ❤

Bình luận (1)
MY
28 tháng 5 2021 lúc 19:43

 bổ sung đề: \(x^2-2mx+4=0\)(1)

\(\Delta'=\left(-m\right)^2-4=m^2-4\)

để pt (1) có 2 nghiệm x1,x2 khi \(\Delta'>0< =>m^2-4>0\)

\(< =>\left(m-2\right)\left(m+2\right)>0\)

<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)thì pt (1) có 2 nghiệm x1,x2

theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=4\end{matrix}\right.\)

có \(\left(x1+1\right)^2+\left(x2^{ }+1\right)^2=2\)

\(< =>x1^2+2x1+1+x2^2+2x2+1-2=0\)

\(< =>\left(x1+x2\right)^2-2x1x2+2\left(x1+x2\right)=0\)

\(< =>2m^2-2.4+2.2m=0\)

\(< =>2m^2+4m-8=0\)

\(\Delta1=4^2-4\left(-8\right)2=80>0\)

\(m1=\dfrac{-4+\sqrt{80}}{4}=-1+\sqrt{5}\)(loại)

m2=\(\dfrac{-4-\sqrt{80}}{4}=-1-\sqrt{5}\)(TM)

vậy...

Bình luận (2)

Các câu hỏi tương tự
VS
Xem chi tiết
ND
Xem chi tiết
LE
Xem chi tiết
ND
Xem chi tiết
HG
Xem chi tiết
DD
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
HI
Xem chi tiết