Bài 6: Hệ thức Vi-et và ứng dụng

DD

Cho phương trình x-5x +m = 0

a) Giải phương trình khi m=6.

b) Tìm m để phương trình có 2 nghiệm dương x1, x2 thoả mãn x1√x2 + x2√x1 = 6

(Giúp mình với ;-;)

 

TC
14 tháng 4 2022 lúc 6:06

â) thay m = 6 và phương trình ta đc

\(x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right).\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Bình luận (0)
NL
14 tháng 4 2022 lúc 16:12

b.

Phương trình có 2 nghiệm khi: \(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

Pt có 2 nghiệm dương khi \(m>0\)

\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)

\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+2x_1x_2\sqrt{x_1x_2}=36\)

\(\Leftrightarrow5m+2m\sqrt{m}=36\)

Đặt \(\sqrt{m}=t>0\Rightarrow2t^3+5t^2-36=0\)

\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)

\(\Leftrightarrow t=2\Rightarrow\sqrt{m}=2\)

\(\Rightarrow m=4\)

Bình luận (0)

Các câu hỏi tương tự
VM
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
ND
Xem chi tiết
LH
Xem chi tiết
ND
Xem chi tiết
HN
Xem chi tiết
BS
Xem chi tiết
NQ
Xem chi tiết