Bài 6: Hệ thức Vi-et và ứng dụng

LE

Cho phương trình ẩn x: x2 - 2(m+1)x + m2 - 1 = 0 . Tìm giá trị của m để phương tình có 2 nghiệm x1 x thỏa mãn x12 + x2= x1.x2 + 8

AH
17 tháng 3 2021 lúc 18:04

Lời giải:

Để PT có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(m^2-1)>0\Leftrightarrow 2m+2>0\Leftrightarrow m>-1$

Áp dụng định lý Viet:

$x_1+x_2=2(m+1)$ và $x_1x_2=m^2-1$

Khi đó, để $x_1^2+x_2^2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+8$

$\Leftrightarrow 4(m+1)^2=3(m^2-1)+8$

$\Leftrightarrow m^2+8m-1=0$

$\Leftrightarrow m=-4\pm \sqrt{17}$. Vì $m>-1$ nên $m=-4+\sqrt{17}$

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
HN
Xem chi tiết
CM
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
LB
Xem chi tiết
ND
Xem chi tiết
DT
Xem chi tiết