Bài 4: Liên hệ giữa phép chia và phép khai phương

TD

Với a ≥ 0 và b ≥ 0, chứng minh \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)

AH
23 tháng 9 2018 lúc 17:27

Lời giải:

Biến đổi tương đương:

\(\sqrt{\frac{a+b}{2}}\geq \frac{\sqrt{a}+\sqrt{b}}{2}\)

\(\Leftrightarrow \frac{a+b}{2}\geq \frac{(\sqrt{a}+\sqrt{b})^2}{4}=\frac{a+b+2\sqrt{ab}}{4}\)

\(\Leftrightarrow \frac{a+b}{2}-\frac{a+b+2\sqrt{ab}}{4}\geq 0\)

\(\Leftrightarrow \frac{a+b-2\sqrt{ab}}{4}\geq 0\)

\(\Leftrightarrow \frac{(\sqrt{a}-\sqrt{b})^2}{4}\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b$

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VN
Xem chi tiết
LM
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
SK
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết