Xét ΔOHA vuông tại H và ΔOKA vuông tại K có
OA chung
AH=AK
Do dó: ΔOHA=ΔOKA
=>góc HOA=góc KOA
=>OA là phân giác của góc HOK
Xét ΔOHA vuông tại H và ΔOKA vuông tại K có
OA chung
AH=AK
Do dó: ΔOHA=ΔOKA
=>góc HOA=góc KOA
=>OA là phân giác của góc HOK
Cho góc nhọn xOy , trên tia Ox lấy điểm A , trên tia Oy lấy điểm B sao cho OA = OB , Từ A và B kẻ AH , BK lần lượt vuông góc với Oy và Ox.
a) Chứng minh △OHA = △OKB
b) Gọi I là giao điểm của AH và BK . Chứng minh rằng OI là tia phân giác của góc xOy
Bài 2: Cho góc nhọn xOy. Gọi I là một điểm thuộc tia phân giác của góc xOy. Kẻ IA vuông góc với Ox (điểm A thuộc tia Ox) và IB vuông góc với Oy (điểm B thuộc tia Oy) a) Chứng minh △OAI = △OBI, IA = IB.
b) Cho biết OI = 10cm, AI = 6cm. Tính OA.
c) Gọi K là giao điểm của BI và Ox và M là giao điểm của AI với Oy. So sánh AK và BM?
d) Gọi C là giao điểm của OI và MK. Chứng minh OC vuông góc với MK
Bài 1: Trên tia phân giác của góc nhọn xOy lấy điểm M (M ϵ O). Từ M kẻ MA ϵ Ox; MB ϵ Oy (A ϵ Ox; B ϵ Oy). Chứng minh rằng OA = OB.
bài 13 cho tam giác abc vuông tại a kẻ ah vuông góc với bc từ điểm h hạ he vuông góc với ab hf vuông góc với ac
a chứng minh ef=ah
b gọi o là giao điểm của ef và ah chứng minh oa=oh oe=of
c chứng minh góc aef=acb ahe =abc
cho góc xoy khác gót bẹt.lấy các điểm a,b thuộc tia ox sao cho oa<ob. gọi e là giao điểm của ad và bc. chứng minh rằng
a) ad=bc
b)tam giác EAB=tam giác ACD
c)OE là phân giác của xoy
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE.
a) Chứng minh AD = AE.
b) Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác của góc A.
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh AK là tia phân giác của góc A ?
Bài 5. Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Qua I kẻ các đường thẳng vuông góc với hai cạnh của góc A, cắt các tia AB và AC theo thứ tự tại H và K. Chứng minh rằng
a) AH = AK
b) BH = CK
c) AK = \(\dfrac{AC+AB}{2}\) , CK = \(\dfrac{AC-AB}{2}\)
Bài 8. Cho tam giác ABC vuông tại A, đường phân giác BK (K AC ). Lấy điểm I thuộc BC sao
cho BI=BA
a) Chứng minh: = ABK IBK. Từ đó suy ra KI BC ⊥ .
b) Kẻ AH BC ⊥ Chứng minh AI là tia phân giác của góc HAC .
c) Gọi E là giao điểm của AH và BK. Chứng minh AKE là tam giác cân.