Bài 7: Hình bình hành

SK

Tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì  ? Vì sao ?

DB
26 tháng 9 2017 lúc 15:47

A B C D E F G H

Xét \(\Delta ABC\) có:

E là trung điểm AB (gt)

F là trung điểm AC (gt)

=> EF là đường trung bình \(\Delta ABC\) (ĐN đường TB \(\Delta\))

=> EF // AC, \(EF=\dfrac{AC}{2}\) (tính chất đường TB \(\Delta\))

Xét \(\Delta ADC\) có:

H là trung điểm AD

G là trung điểm DC

=> HG là đường trung bình \(\Delta ADC\) (ĐN đường TB \(\Delta\))

=> HG // AC, \(HG=\dfrac{BC}{2}\) (tính chất đường TB \(\Delta\))

Ta có: EF // AC, HG // AC

\(EF=\dfrac{AC}{2},HG=\dfrac{AC}{2}\)

=> EF // HG, EF = HG

Xét tứ giác EFGH có:

EF // HG

EF = HG

=> EFGH là hình bình hành (dhnb)

Bình luận (1)
HY
21 tháng 4 2017 lúc 17:11

Tứ giác EFGH là hình bình hành.

Cách 1: EB = EA, FB = FC (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

Tương tự HG là đường trung bình của ∆ACD.

Do đó HG // AC

Suy ra EF // HG (1)

Tương tự EH // FG (2)

Từ (1) và (2) suy ra EFGH là hình bình hành (dấu hiêu nhận biết 1).

Cách 2: EF là đường trung bình của ∆ABC nên EF = 1212AC.

HG là đường trung bình của ∆ACD nên HG = 1212AC.

Suy ra EF = HG

Lại có EF // HG ( chứng minh trên)

Vậy EFGH là hình bình hành (dấu hiệu nhận biết 3).

Bình luận (0)
KN
9 tháng 10 2022 lúc 17:35

TỨ giác ABCD có E,F,G,Htheo thứ tự là trung diểm của các cạnh AB,BC,CD,DA.Chứng minh EF//GH,EH//FG

Bình luận (1)

Các câu hỏi tương tự
SK
Xem chi tiết
NA
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết
NH
Xem chi tiết
LH
Xem chi tiết
TH
Xem chi tiết
T8
Xem chi tiết