Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

DC

Trong mp Oxy cho đường thẳng d đi qua M(2;1) tạo với hệ trục toạ độ một tam giác có diện tích 4 tìm đường thẳng d đó

NL
4 tháng 6 2020 lúc 15:55

Gọi phương trình d có dạng: \(y=ax+b\) với \(a;b\ne0\)

Do d qua M nên: \(1=2a+b\Rightarrow b=-2a+1\Rightarrow y=ax-2a+1\)

Gọi A là giao của d với Ox \(\Rightarrow A\left(\frac{2a-1}{a};0\right)\) \(\Rightarrow OA=\left|\frac{2a-1}{a}\right|\)

Gọi B là giao của d với Oy \(\Rightarrow B\left(0;-2a+1\right)\Rightarrow OB=\left|2a-1\right|\)

\(S_{OAB}=\frac{1}{2}OA.OB=4\Leftrightarrow OA.OB=8\)

\(\Leftrightarrow\left|\frac{2a-1}{a}\right|.\left|2a-1\right|=8\)

\(\Leftrightarrow\left(2a-1\right)^2=8\left|a\right|\)

- Với \(a>0\Rightarrow4a^2-4a+1=8a\Leftrightarrow4a^2-12a+1=0\Rightarrow a=\frac{3\pm2\sqrt{2}}{2}\)

- Với \(a< 0\Rightarrow4a^2-4a+1=-8a\Leftrightarrow4a^2+4a+1=0\Rightarrow a=-\frac{1}{2}\)

Có 3 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}y=\frac{3+2\sqrt{2}}{2}x-2-2\sqrt{2}\\y=\frac{3-2\sqrt{2}}{2}x-2+2\sqrt{2}\\y=-\frac{1}{2}x+2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
HQ
Xem chi tiết
NT
Xem chi tiết
CP
Xem chi tiết
NT
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
CG
Xem chi tiết
HG
Xem chi tiết