NA

Trong mặt phẳng tọa độ oxy cho (P):y = x^2 và (d): y = 2mx + 3 - 2m Chứng minh d luôn cắt P tại hai điểm mặt phẳng A và B. Tìm m để x1, x2 là độ dài hai cạnh của hình chữ nhật có đường chéo bằng √14

NT
5 tháng 3 2023 lúc 7:42

PTHĐGĐ là;
x^2-2mx-3+2m=0

Δ=(-2m)^2-4(2m-3)

=4m^2-8m+12

=4m^2-8m+4+8

=(2m-2)^2+8>0

=>(P) luôn cắt (d) tại hai điểm phân biệt

x1^2+x2^2=14

=>(x1+x2)^2-2x1x2=14

=>(2m)^2-2(2m-3)=14

=>4m^2-4m+6-14=0

=>4m^2-4m-8=0

=>m^2-m-2=0

=>(m-2)(m+1)=0

=>m=2 hoặc m=-1

Bình luận (0)

Các câu hỏi tương tự
QV
Xem chi tiết
CN
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PD
Xem chi tiết
FM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết