Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

MN

Trong mặt phẳng tọa độ Oxy, cho đường tròn d1: \(\sqrt{3}\)x + y = 0 và d2: \(\sqrt{3}\)x - y = 0. Gọi (T) là đường tròn tiếp xúc với d1 tại A, cắt d2 tại B và C sao cho tam giác ABC vuông tại B. Biết ABC có diện tích = \(\frac{\sqrt{3}}{2}\) và điểm A có xA > 0. Khi đó pt của (T) là

NL
11 tháng 4 2020 lúc 15:37

Dễ dàng nhận thấy AC là đường kính của đường tròn và AC vuông góc d1; AB vuông góc d2

Gọi tọa độ A có dạng \(A\left(a;-a\sqrt{3}\right)\) với \(a>0\)

Gọi d là đường thẳng qua A vuông góc d2 \(\Rightarrow\) d nhận \(\left(1;\sqrt{3}\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-a\right)+\sqrt{3}\left(y+a\sqrt{3}\right)=0\Leftrightarrow x+\sqrt{3}y+2a=0\)

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+\sqrt{3}y+2a=0\\\sqrt{3}x-y=0\end{matrix}\right.\) \(\Rightarrow B\left(-\frac{a}{2};-\frac{a\sqrt{3}}{2}\right)\)

\(\Rightarrow\overrightarrow{BA}=\left(\frac{3a}{2};-\frac{a\sqrt{3}}{2}\right)\Rightarrow AB=a\sqrt{3}\)

Gọi d' là đường thẳng qua A và vuông góc d1 \(\Rightarrow\) d' nhận \(\left(1;-\sqrt{3}\right)\) là 1 vtpt

Phương trình d':

\(1\left(x-a\right)-\sqrt{3}\left(y+a\sqrt{3}\right)=0\Leftrightarrow x-\sqrt{3}y-4a=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x-\sqrt{3}y-4a=0\\\sqrt{3}x-y=0\end{matrix}\right.\) \(\Rightarrow C\left(-2a;-2a\sqrt{3}\right)\)

\(\Rightarrow\overrightarrow{CB}=\left(\frac{3a}{2};\frac{3a\sqrt{3}}{2}\right)\) \(\Rightarrow BC=3a\)

\(S_{ABC}=\frac{1}{2}AB.BC=\frac{\sqrt{3}}{2}\Leftrightarrow\frac{1}{2}.a\sqrt{3}.3a=\frac{\sqrt{3}}{2}\) \(\Rightarrow a=\frac{\sqrt{3}}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}A\left(\frac{\sqrt{3}}{3};-1\right)\\C\left(-\frac{2\sqrt{3}}{3};-2\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}I\left(-\frac{\sqrt{3}}{6};-\frac{3}{2}\right)\\R=\frac{AC}{2}=1\end{matrix}\right.\)

Phương trình đường tròn: \(\left(x+\frac{\sqrt{3}}{6}\right)^2+\left(y+\frac{3}{2}\right)^2=1\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
TV
Xem chi tiết
LH
Xem chi tiết
NC
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
HV
Xem chi tiết
ML
Xem chi tiết