Cho đường tròn (O) một cung AB và S là điểm chính giữa cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH, SE gặp đường tròn tại C và D. Chứng minh EHCD là tứ giác nội tiếp.
Cho đường tròn (O) một cung AB và S là điểm chính giữa cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH, SE gặp đường tròn tại C và D. Chứng minh EHCD là tứ giác nội tiếp. (Vẽ hình, ghi GT và KL)
Cho đường tròn (O), dây AB. Các tiếp tuyến của đường tròn tại A và B cắt nha tại C. Trên dây AB lấy điểm E(EA>EB). Đường vuông góc với OE tại E cắt CA và CB theo thứ tự ở I và K. Chứng minh rằng
1) OAEI, OEBK là các tứ giác nội tiếp 3) AI = BK
2) OIK là tam giác cân 4) OICK là tứ giác nội tiếp
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Cho nữa đường tròn (O;R) đường kính AB. Lấy điểm C là điểm chính giữa của cung AB, N là trung điểm của dây cung CB. Đường thẳng AN cắt nữa đường tròn (O) tại M. Từ C kẻ CI vuông góc với AM tại I.
a) Chứng minh tứ giác ACIO nội tiếp.
b) Chứng minh góc MOI = góc CAI.
c) Tính bán kính đường tròn ngoại tiếp tam giác IOM theo R.
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Trên tia đối của tia AB lấy điểm M. Qua M kẻ đường thẳng (d) cắt (O) tại C và D (C nằm giữa M và D), đường thẳng (d') cắt (O') tại E và F (E nằm giữa F và M). Chứng minh CDFE là tứ giác nội tiếp
Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thẳng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng:
a) Tứ giác MAOB là tứ giác nội tiếp và
b) Bốn điểm O, H, C, D thuộc một đường tròn.
c) CI là tia phân giác của .
Cho đường tròn tâm O bán kính R, hai điểm C và D thuộc đường tròn, B là điểm chính giữa cung nhỏ CD . Kẻ đường kính BA, trên tia đối của BA lấy điểm S , nối S với C cắt (O) tại M , MD cắt AB tại K, MB cắt AC tại H.
a) Chứng minh góc BMD bằng góc BAC. Từ đó suy ra tứ giác AMHK nội tiếp
b) Chứng minh HK // CD
Cho nửa đường tròn (O; R) ,dây AB = R √3 cố định không đi qua tâm. Gọi C là điểm thuộc cung lớn AB và AC. Gọi I là giao điểm của BN và CM. Dây MN cắt dây AB và AC lần lượt tại H và K. Tính số đo góc ACB và chứng minh tứ giác BMHI nội tiếp đường tròn.