Tính tổng :
a) 12+322+523+....+2n−12n
b)
Giải
a) HD: Đặt tổng là S\(_n\) và tính 2S\(_n\)
ĐS : S\(_n\)=3−\(\frac{2n+3}{2^n}\)
b) HD: n\(^2\)- (n+1)\(^2\)= -2n-1
Ta có: 1\(^2\)-2\(^2\)= -3; 3\(^2\) - 4\(^2\)= -7;....
Ta có: u\(_1\)= -3, d= -4 và tính S\(_n\) trong từng trường hợp n chẵn, lẻ.
Sn=3−2n+32nb) HD : b) HD : n2−(n+1)2=−2n−1n2−(n+1)2=−2n−1 Ta có 12−22=−3;32−42=−7;...12−22=−3;32−42=−7;... b) HD :