H24

tính số hạng đầu \(u_1\) và công bội q của 1 cấp số nhân biết

a) \(\left\{{}\begin{matrix}u_5-u_1=15\\u_4-u_1=6\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}u_1-u_3+u_5=65\\u_1+u_7=325\end{matrix}\right.\)

NT
21 tháng 10 2023 lúc 9:28

a: \(\left\{{}\begin{matrix}u5-u1=15\\u4-u1=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u1\cdot q^4-u1=15\\u1\cdot q^3-u1=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u1\left(q^4-1\right)=15\\u1\left(q^3-1\right)=6\end{matrix}\right.\Leftrightarrow\dfrac{q^4-1}{q^3-1}=\dfrac{5}{2}\)

=>\(2\left(q^4-1\right)=5\left(q^3-1\right)\)

=>\(2q^4-2-5q^3+5=0\)

=>\(2q^4-5q^3+3=0\)

=>\(2q^4-2q^3-3q^3+3=0\)

=>\(2q^3\left(q-1\right)-3\left(q-1\right)\left(q^2+q+1\right)=0\)

=>\(\left(q-1\right)\left(2q^3-3q^2-3q-3\right)=0\)

=>\(\left[{}\begin{matrix}q=1\\q\simeq2,39\end{matrix}\right.\)

=>\(u1=\dfrac{6}{q^3-1}\simeq\dfrac{6}{2.39^3-1}\simeq0,47\)

b: \(\left\{{}\begin{matrix}u1-u3+u5=65\\u1+u7=325\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u1-u1\cdot q^2+u1\cdot q^4=65\\u1+u1\cdot q^6=325\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u1\cdot\left(1-q^2+q^4\right)=65\\u1\left(1+q^6\right)=325\end{matrix}\right.\)

=>\(\dfrac{1-q^2+q^4}{1+q^6}=\dfrac{65}{325}=\dfrac{1}{5}\)

=>\(\dfrac{1}{q^2+1}=\dfrac{1}{5}\)

=>\(q^2+1=5\)

=>q^2=4

=>q=2 hoặc q=-2

TH1: q=2

=>\(u1=\dfrac{325}{q^6+1}=5\)

TH2: q=-2

=>\(u1=\dfrac{325}{\left(-2\right)^6+1}=5\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết