Chứng minh đẳng thức phụ:
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{a+b+c}{abc}\)
\(\Rightarrow\) Với \(a+b+c=0\). Ta có: \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
\(\Leftrightarrow\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\)với \(a+b+c=0\)
Ta có:
\(S=\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+.....+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\)
Áp dụng đẳng thức phụ trên:
\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{1^2}+\dfrac{1}{\left(-2\right)^2}}=1+1-\dfrac{1}{2}\left(>0\right)\)
\(\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{\left(-3\right)^2}}=1+\dfrac{1}{2}-\dfrac{1}{3}\left(>0\right)\)
\(\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{\left(-4\right)^2}}=1+\dfrac{1}{3}-\dfrac{1}{4}\left(>0\right)\)
\(.................\)
\(\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{99^2}+\dfrac{1}{\left(-100\right)^2}}=1+\dfrac{1}{99}-\dfrac{1}{100}\)
Cộng vế với vế các đẳng thức trên, ta có:
\(S=\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+........+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\)
\(=1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+............+1+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=99+1-\dfrac{1}{100}=99+\dfrac{99}{100}=99\dfrac{99}{100}\)
Chứng minh kiểu khác :v
\(\forall n\in\)N*, ta có:
\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{\left[n.\left(n+1\right)\right]^2+2n\left(n+1\right)+1}{\left[n\left(n+1\right)\right]^2}}\)
\(=\sqrt{\dfrac{\left[n\left(n+1\right)+1\right]^2}{\left[n\left(n+1\right)\right]^2}}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)
Việc còn lại là áp dụng vào bài thoy :v