Bài 7: Hình bình hành

DD

tính :

A=\(\dfrac{x^2}{\left(x-y\right)^2.\left(x+y\right)}-\dfrac{2xy^2}{x^4-2x^2y^2+y^4}+\dfrac{7^2}{\left(x^2-y^2\right)\left(x+y\right)}\)

B=\(\dfrac{x+3}{x+1}-\dfrac{2x-1}{x-1}-\dfrac{x-3}{x-1}\)

TD
6 tháng 7 2018 lúc 21:01

ĐKXĐ: \(x\ne\pm y\)

\(A=\dfrac{x^2}{\left(x-y\right)^2.\left(x+y\right)}-\dfrac{2xy^2}{x^4-2x^2y^2+y^4}+\dfrac{7^2}{\left(x^2-y^2\right)\left(x+y\right)}\)

\(A=\dfrac{x^2}{\left(x-y\right)^2.\left(x+y\right)}-\dfrac{2xy^2}{\left(\left(x+y\right).\left(x-y\right)\right)^2}+\dfrac{49}{\left(x+y\right)^2.\left(x-y\right)}\)

\(A=\dfrac{x^2}{\left(x-y\right)^2.\left(x+y\right)^{ }}-\dfrac{2xy^2}{\left(x-y\right)^2.\left(x+y\right)^2}+\dfrac{49}{\left(x+y\right)^2.\left(x-y\right)}\)

\(A=\dfrac{x^2.\left(x+y\right)-2xy^2+49.\left(x-y\right)}{\left(x-y\right)^2.\left(x+y\right)^2}\)

\(A=\dfrac{x^3+x^2y-2xy^2+49x-49y}{\left(x-y\right)^2.\left(x+y\right)^2}\)

Bình luận (0)
TD
6 tháng 7 2018 lúc 21:08

ĐKXĐ: \(x\ne\pm1\)

\(B=\dfrac{x+3}{x+1}-\dfrac{2x-1}{x-1}-\dfrac{x-3}{x-1}\)

\(B=\dfrac{\left(x+3\right).\left(x-1\right)-\left(2x-1\right).\left(x+1\right)-\left(x-3\right)\left(x+1\right)}{\left(x+1\right).\left(x-1\right)}\)

\(B=\dfrac{x^2-x+3x-3-2x^2-2x+x+1-x^2-x+3x+3}{\left(x+1\right).\left(x-1\right)}\)

\(B=\dfrac{-4x^2+4x+1}{\left(x+1\right).\left(x-1\right)}=\dfrac{1+4x-4x^2}{\left(x+1\right).\left(x-1\right)}=\dfrac{\left(1-2x\right)^2}{\left(x+1\right).\left(x-1\right)}\)

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết