Ôn tập chương IV

HT

Tìm tham số m để: \(\left|\frac{x^2+x+4}{x^2-mx+4}\right|\le2\) \(\forall x\)

NL
19 tháng 4 2020 lúc 19:51

\(\Leftrightarrow\left|\frac{x^2-mx+4}{x^2+x+4}\right|\ge\frac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\frac{x^2-mx+4}{x^2+x+4}\ge\frac{1}{2}\\\frac{x^2-mx+4}{x^2+x+4}\le-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2\left(x^2-mx+4\right)\ge x^2+x+4\\2\left(x^2-mx+4\right)\le-x^2-x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-\left(2m+1\right)x+4\ge0\left(1\right)\\3x^2-\left(2m-1\right)x+12\le0\left(2\right)\end{matrix}\right.\)

Xét (2), do \(a=3>0\) nên ko tồn tại m để (2) thỏa mãn với mọi x

Xét (1), để BPT đúng với mọi x

\(\Leftrightarrow\Delta\le0\Leftrightarrow4m^2+4m-15\le0\)

\(\Rightarrow-\frac{5}{2}\le m\le\frac{3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
JV
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
SA
Xem chi tiết
HT
Xem chi tiết
SA
Xem chi tiết