\(A=2x^2+y^2+4x-2xy\)
\(=\left(x^2+4x+4\right)+\left(x^2-2xy+y^2\right)-4\)
\(=\left(x+2\right)^2+\left(x-y\right)^2-4\ge-4\)
Vậy MIN \(A=-4\)khi \(x=y=-2\)
A= (x2-2xy+y2) +( x2+4x+22) -4
A= (x-y)2+(x+2)2-4
Vì (x-y)2+(x+2)2 >= 0
=> A >= -4
Min a = -4 <=> x=-2=y