Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

TT

Tìm Min

a)y=\(\sqrt{x^2-6x+10}\)

b)\(y=\sqrt{\dfrac{x^2}{9}-\dfrac{2x}{15}+1}\)

ND
22 tháng 6 2018 lúc 20:39

a. \(y=\sqrt{x^2-6x+10}=\sqrt{x^2-6x+9+1}=\sqrt{\left(x-3\right)^2+1}\ge\sqrt{0+1}=1\)

\(\Rightarrow Min_y=1\Leftrightarrow x=3\)

b. \(y=\sqrt{\dfrac{x^2}{9}-\dfrac{2x}{15}+1}=\sqrt{\left(\dfrac{x}{3}\right)^2-2.\dfrac{x}{3}.\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{24}{25}}=\sqrt{\left(\dfrac{x}{3}-\dfrac{1}{5}\right)^2+\dfrac{24}{25}}\ge\sqrt{0+\dfrac{24}{25}}=\sqrt{\dfrac{24}{25}}\)

\(\Rightarrow Min_y=\sqrt{\dfrac{24}{25}}\Leftrightarrow x=\dfrac{3}{5}\)

Bình luận (0)
HH
22 tháng 6 2018 lúc 20:29

Giải:

a) \(y=\sqrt{x^2-6x+10}\)

\(\Leftrightarrow y=\sqrt{x^2-6x+9+1}\)

\(\Leftrightarrow y=\sqrt{\left(x^2-6x+9\right)+1}\)

\(\Leftrightarrow y=\sqrt{\left(x-3\right)^2+1}\ge1\)

\(\Leftrightarrow y_{Min}=1\)

\("="\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy ...

b) \(y=\sqrt{\dfrac{x^2}{9}-\dfrac{2x}{15}+1}\)

\(\Leftrightarrow y=\sqrt{\dfrac{x^2}{9}-\dfrac{2x}{15}+\dfrac{1}{25}+\dfrac{24}{25}}\)

\(\Leftrightarrow y=\sqrt{\left(\dfrac{x^2}{9}-\dfrac{2x}{15}+\dfrac{1}{25}\right)+\dfrac{24}{25}}\)

\(\Leftrightarrow y=\sqrt{\left(\dfrac{x}{3}-\dfrac{1}{5}\right)^2+\dfrac{24}{25}}\ge\dfrac{24}{25}\)

\(\Leftrightarrow y_{Min}=\dfrac{24}{25}\)

\("="\Leftrightarrow\dfrac{x}{3}-\dfrac{1}{5}=0\Leftrightarrow x=\dfrac{3}{5}\)

Vậy ...

Bình luận (2)

Các câu hỏi tương tự
PN
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
VV
Xem chi tiết
VU
Xem chi tiết
TD
Xem chi tiết
NR
Xem chi tiết
BD
Xem chi tiết
MV
Xem chi tiết