Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

H24

tính

\(a,\sqrt{32+10\sqrt{7}}+\sqrt{32-10\sqrt{7}}\)

\(b,\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(c,\dfrac{3-\sqrt{x}}{9-x}\) với \(x\ge0,x\ne9\)

\(d,\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}\) với \(x\ge0,x\ne9\)

\(e,\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-1}\) với \(x\ge0,x\ne1\)

\(f,\dfrac{x\sqrt{x}+64}{\sqrt{x}+4}\) với \(x\ge0\)

\(g,\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\) với \(x\ge0,y\ge0,x\ne y\)

\(h,6-2x-\sqrt{9-6x+x^2}\) với \(x< 3\)

\(i,\sqrt{x+2+2\sqrt{x+1}}\) với \(x\ge1\)

PL
21 tháng 7 2018 lúc 16:46

\(a.\sqrt{32+10\sqrt{7}}+\sqrt{32-10\sqrt{7}}=\sqrt{25+2.5\sqrt{7}+7}+\sqrt{25-2.5\sqrt{7}+7}=5+\sqrt{7}+5-\sqrt{7}=10\)

\(b.\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{25+2.5.3\sqrt{2}+18}=5+3\sqrt{2}\) \(c.\dfrac{3-\sqrt{x}}{9-x}=\dfrac{3-\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}=\dfrac{1}{3+\sqrt{x}}\)

\(d.\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

\(e.\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-1}=\sqrt{x}-2\)

\(f.\dfrac{x\sqrt{x}+64}{\sqrt{x}+4}=\dfrac{\left(\sqrt{x}+4\right)\left(x-4\sqrt{x}+16\right)}{\sqrt{x}+4}=x-4\sqrt{x}+16\)

\(g.\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)

Còn 2 con cuối làm tương tự nhé ( đăng dài quá ).

Bình luận (0)
ND
21 tháng 7 2018 lúc 16:49

\(a.\sqrt{32+10\sqrt{7}}+\sqrt{32-10\sqrt{7}}=\sqrt{25+2.\sqrt{25}.\sqrt{7}+7}+\sqrt{25-2.\sqrt{25}.\sqrt{7}+7}=\sqrt{\left(5+\sqrt{7}\right)^2}+\sqrt{\left(5-\sqrt{7}\right)^2}=5+\sqrt{7}+5-\sqrt{7}=10\)\(b.\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.\sqrt{8}.1}+1}}=\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}=\sqrt{13+30\sqrt{2+\sqrt{8}+1}}=\sqrt{13+30\sqrt{3+2\sqrt{2}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}}=\sqrt{13+30\sqrt{2}+30}=\sqrt{\sqrt{25}+2.\sqrt{25}.\sqrt{18}+18}=\sqrt{\left(5+\sqrt{18}\right)^2}=5+\sqrt{18}\)

\(c.\dfrac{3-\sqrt{x}}{9-x}=\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{9-x}.\dfrac{1}{3+\sqrt{x}}=\dfrac{9-x}{9-x}.\dfrac{1}{3+\sqrt{x}}=\dfrac{1}{3+\sqrt{x}}=\dfrac{3-\sqrt{x}}{9-x}\)\(d.\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{x-2\sqrt{x}-3\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)}=\sqrt{x}-2\)\(e.\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{x-\sqrt{x}-2\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-1}=\sqrt{x}-2\)

\(g.\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(x\sqrt{x}-y\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{x^2+x\sqrt{xy}-y\sqrt{xy}-y^2}{x-y}=\dfrac{\sqrt{xy}\left(x-y\right)+\left(x-y\right)\left(x+y\right)}{x-y}=\dfrac{\left(x-y\right)\left(\sqrt{xy}+x+y\right)}{x-y}=x+y+\sqrt{xy}\)\(h.6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(x-3\right)^2}=6-2x-\left|x-3\right|=6-2x-3+x=3-x\)

\(i.\sqrt{x+2+2\sqrt{x+1}}=\sqrt{x+1+2\sqrt{x+1}+1}=\sqrt{\left(\sqrt{x+1}+1\right)^2}=\sqrt{x+1}+1\)

Bình luận (0)
DT
21 tháng 7 2018 lúc 16:51

a) \(\sqrt{32+10\sqrt{7}}+\sqrt{32-10\sqrt{7}}\)

\(=\sqrt{\left(5+\sqrt{7}\right)^2}+\sqrt{\left(5-\sqrt{7}\right)^2}\)

\(=5+\sqrt{7}+5-\sqrt{7}\)

=10

b)\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{2+\sqrt{\left(1+2\sqrt{2}\right)^2}}}\)

\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{13+30\sqrt{2}+30}\)

\(=\sqrt{43+30\sqrt{2}}\)

\(=\sqrt{\left(5+3\sqrt{2}\right)^2}\)

\(=5+3\sqrt{2}\)

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
PN
Xem chi tiết
YS
Xem chi tiết
HH
Xem chi tiết
TD
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
HH
Xem chi tiết
HH
Xem chi tiết