Bài 2:
a: TH1: m=0
Pt sẽ là \(-\left(2\cdot0+1\right)x+0-5=0\)
=>-x-5=0
=>x=-5(loại)
TH2: m<>0
\(\text{Δ}=\left(2m+1\right)^2-4m\left(m-5\right)\)
=4m^2+4m+1-4m^2+20m
=24m+1
Để pt vô nghiệm thì 24m+1<0
=>m<-1/24
b: TH1: m=3
Pt sẽ là (3-3)*x^2+2(3-3)*x+3+1=0
=>4=0(loại)
TH2: m<>3
\(\text{Δ}=\left(6-2m\right)^2-4\left(m-3\right)\left(m+1\right)\)
\(=4m^2-24m+36-4\left(m^2-2m-3\right)\)
\(=4m^2-24m+36-4m^2+8m+12=-16m+48\)
Để phương trình vônghiệm thì -16m+48<0
=>-16m<-48
=>m>3