§2. Phương trình quy về phương trình bậc nhất, bậc hai

SK

Cho phương trình :

                        \(\left(m+2\right)x^2+\left(2m+1\right)x+2=0\)

a) Xác định m để phương trình có hai nghiệm trái dấu và tổng hai nghiệm bằng -3

b) Với giá trị nào của m thì phương trình có nghiệm kép ? Tìm nghiệm kép đó ?

BV
4 tháng 5 2017 lúc 8:31

a) Để phương trình có hai nghiệm trái dấu khi và chỉ khi: \(ac< 0\Leftrightarrow2\left(m+2\right)< 0\)\(\Leftrightarrow m+2< 0\)\(\Leftrightarrow m< -2\). (1)
Tổng hai nghiệm đó bằng - 3 khi và chỉ khi:
\(x_1+x_2=\dfrac{2m+1}{m+2}=-3\)
\(\Rightarrow2m+1=3\left(m+2\right)\)\(\Leftrightarrow m=-5\)
Kết hợp với điều kiện (1) ta được \(m=-5\) là giá trị cần tìm.

 

Bình luận (0)
BV
4 tháng 5 2017 lúc 8:39

b) Phương trình có nghiệm kép khi và chỉ khi:
\(\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+2\ne0\\\left(2m+1\right)^2-4.2.\left(m+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(m=\dfrac{5}{2}\) hoặc \(m=-\dfrac{3}{2}\) là giá trị cần tìm.

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết