- Ta có: 24 = 23.3
30 = 2.3.5
BCNN(24, 30) = 23.3.5 = 120
- Ta có các số 3, 7, 8 từng đôi một là số nguyên tố cùng nhau.
=> BCNN(3, 7, 8) = 3.7.8 = 168
- Ta có 48 là bội của 12 và 16
=> BCNN(12, 16, 48) = 48.
- Ta có: 24 = 23.3
30 = 2.3.5
BCNN(24, 30) = 23.3.5 = 120
- Ta có các số 3, 7, 8 từng đôi một là số nguyên tố cùng nhau.
=> BCNN(3, 7, 8) = 3.7.8 = 168
- Ta có 48 là bội của 12 và 16
=> BCNN(12, 16, 48) = 48.
a) Ta có BCNN(12, 16) = 48. Hãy viết tập hợp A các bội của 48. Nhận xét về tập hợp BC(12, 16) và tập hợp A.
b) Để tìm tập hợp bội chung của hai số tự nhiên a và b, ta có thể tìm tập hợp các bội của BCNN(a, b). Hãy vận dụng để tìm tập hợp các bội chung của:
i. 24 và 30; ii. 42 và 60;
iii. 60 và 150; iv. 28 và 35.
Tìm:
a) BC(6, 14); b) BC(6, 20, 30);
c) BCNN(1,6); d) BCNN (10, 1, 12);
e) BCNN (5, 14).
Tìm BCNN(2, 5, 9); BCNN(10, 15, 30).
Viết tập hợp BC(4, 7), từ đó chỉ ra BCNN(4, 7). Hai số 4 và 7 có là hai số nguyên tố cùng nhau không?
a) Quy đồng mẫu các phân số sau:
i.\(\frac{5}{{12}}\) và \(\frac{7}{{30}}\); ii.\(\frac{1}{2};\,\,\frac{3}{5}\) và \(\frac{5}{8}\).
b) Thực hiện các phép tính sau:
i.\(\frac{1}{6} + \frac{5}{8}\); ii.\(\frac{{11}}{24} - \frac{7}{{30}}\)
Quy đồng mẫu số các phân số sau (có sử dụng bội chung nhỏ nhất):
\(\)a) \(\frac{3}{{16}}\) và \(\frac{5}{{24}}\); b) \(\frac{3}{{20}};\,\,\frac{{11}}{{30}}\) và \(\frac{7}{{15}}\).
Thực hiện các phép tính: (có sử dụng bội chung nhỏ nhất):
a)\(\frac{11}{15}+\frac{9}{10}\)
b)\(\frac{5}{6}+\frac{7}{9}+\frac{11}{12}\)
c)\(\frac{7}{24}- \frac{2}{21}\)
d)\(\frac{11}{36} - \frac{7}{24}\)
- Chỉ ra số nhỏ nhất khác 0 trong tập hợp BC(6, 8). Hãy nhận xét về quan hệ giữa số nhỏ nhất đó với các bội chung của 6 và 8.
- Chỉ ra số nhỏ nhất khác 0 trong tập hợp BC(3, 4, 8). Hãy nhận xét về quan hệ giữa số nhỏ nhất đó với các bội chung của 3, 4 và 8.
Hãy viết:
a) Các tập hợp: B(3); B(4); B(8).
b) Tập hợp M các số tự nhiên nhỏ hơn 50 là bội chung của 3 và 4.
c) Tập hợp K các số tự nhiên nhỏ hơn 50 là bội chung của 3;4 và 8.